Author: William L. Luyben
Publisher: John Wiley & Sons
ISBN: 1118209834
Category : Technology & Engineering
Languages : en
Pages : 553
Book Description
Hands-on guidance for the design, control, and operation of azeotropic distillation systems Following this book's step-by-step guidance, readers learn to master tested and proven methods to overcome a major problem in chemical processing: the distillation and separation of azeotropes. Practical in focus, the book fully details the design, control, and operation of azeotropic distillation systems, using rigorous steady-state and dynamic simulation tools. Design and Control of Distillation Systems for Separating Azeotropes is divided into five parts: Fundamentals and tools Separations without adding other components Separations using light entrainer (heterogeneous azeotropic distillation) Separations using heavy entrainer (extractive distillation) Other ways for separating azeotropes The distillation methods presented cover a variety of important industrial chemical systems, including the processing of biofuels. For most of these chemical systems, the authors explain how to achieve economically optimum steady-state designs. Moreover, readers learn how to implement practical control structures that provide effective load rejection to manage disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability are discussed, helping readers design and implement the distillation system that best meets their particular needs. In addition, economic and dynamic comparisons between alternative methods are presented, including an example of azeotropic distillation versus extractive distillation for the isopropanol/water system. With its focus on practical solutions, Design and Control of Distillation Systems for Separating Azeotropes is ideal for engineers facing a broad range of azeotropic separation problems. Moreover, this book is recommended as a supplemental text for undergraduate and graduate engineering courses in design, control, mass transfer, and bio-processing.
Design and Control of Distillation Systems for Separating Azeotropes
Author: William L. Luyben
Publisher: John Wiley & Sons
ISBN: 1118209834
Category : Technology & Engineering
Languages : en
Pages : 553
Book Description
Hands-on guidance for the design, control, and operation of azeotropic distillation systems Following this book's step-by-step guidance, readers learn to master tested and proven methods to overcome a major problem in chemical processing: the distillation and separation of azeotropes. Practical in focus, the book fully details the design, control, and operation of azeotropic distillation systems, using rigorous steady-state and dynamic simulation tools. Design and Control of Distillation Systems for Separating Azeotropes is divided into five parts: Fundamentals and tools Separations without adding other components Separations using light entrainer (heterogeneous azeotropic distillation) Separations using heavy entrainer (extractive distillation) Other ways for separating azeotropes The distillation methods presented cover a variety of important industrial chemical systems, including the processing of biofuels. For most of these chemical systems, the authors explain how to achieve economically optimum steady-state designs. Moreover, readers learn how to implement practical control structures that provide effective load rejection to manage disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability are discussed, helping readers design and implement the distillation system that best meets their particular needs. In addition, economic and dynamic comparisons between alternative methods are presented, including an example of azeotropic distillation versus extractive distillation for the isopropanol/water system. With its focus on practical solutions, Design and Control of Distillation Systems for Separating Azeotropes is ideal for engineers facing a broad range of azeotropic separation problems. Moreover, this book is recommended as a supplemental text for undergraduate and graduate engineering courses in design, control, mass transfer, and bio-processing.
Publisher: John Wiley & Sons
ISBN: 1118209834
Category : Technology & Engineering
Languages : en
Pages : 553
Book Description
Hands-on guidance for the design, control, and operation of azeotropic distillation systems Following this book's step-by-step guidance, readers learn to master tested and proven methods to overcome a major problem in chemical processing: the distillation and separation of azeotropes. Practical in focus, the book fully details the design, control, and operation of azeotropic distillation systems, using rigorous steady-state and dynamic simulation tools. Design and Control of Distillation Systems for Separating Azeotropes is divided into five parts: Fundamentals and tools Separations without adding other components Separations using light entrainer (heterogeneous azeotropic distillation) Separations using heavy entrainer (extractive distillation) Other ways for separating azeotropes The distillation methods presented cover a variety of important industrial chemical systems, including the processing of biofuels. For most of these chemical systems, the authors explain how to achieve economically optimum steady-state designs. Moreover, readers learn how to implement practical control structures that provide effective load rejection to manage disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability are discussed, helping readers design and implement the distillation system that best meets their particular needs. In addition, economic and dynamic comparisons between alternative methods are presented, including an example of azeotropic distillation versus extractive distillation for the isopropanol/water system. With its focus on practical solutions, Design and Control of Distillation Systems for Separating Azeotropes is ideal for engineers facing a broad range of azeotropic separation problems. Moreover, this book is recommended as a supplemental text for undergraduate and graduate engineering courses in design, control, mass transfer, and bio-processing.
Design and Control of Distillation Systems for Separating Azeotropes
Author: William L. Luyben
Publisher: Wiley-AIChE
ISBN: 0470575794
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
An azeotrope is a mixture of two or more compounds that cannot be separated or changed by simple distillation. This book addresses an important issue in the energy crisis: the distillation of azeotropes to improve the processing of biofuels. It describes azeotropic systems in a comprehensive, readable form, with updates on recent developments in vapor-liquid and liquid-liquid-vapor equilibrium, simulation tools, and specific examples covering the major processing options available. The text also presents methods for achieving optimum economic design and control structures, and demonstrates trade-offs between energy savings and controllability (product quality variability).
Publisher: Wiley-AIChE
ISBN: 0470575794
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
An azeotrope is a mixture of two or more compounds that cannot be separated or changed by simple distillation. This book addresses an important issue in the energy crisis: the distillation of azeotropes to improve the processing of biofuels. It describes azeotropic systems in a comprehensive, readable form, with updates on recent developments in vapor-liquid and liquid-liquid-vapor equilibrium, simulation tools, and specific examples covering the major processing options available. The text also presents methods for achieving optimum economic design and control structures, and demonstrates trade-offs between energy savings and controllability (product quality variability).
Conceptual Design of Distillation Systems with CD-ROM
Author: Michael F. Doherty
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Computers
Languages : en
Pages : 608
Book Description
This book is a pioneering effort by two of the world's top researchers. The authors have fashioned a text which develops models, the basis for software tools for conceptual design. The book clearly addresses both analysis and design with sharp attention to supplying mathematical correctness and providing physical insight. A software supplement accompanies the text in a student version.
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Computers
Languages : en
Pages : 608
Book Description
This book is a pioneering effort by two of the world's top researchers. The authors have fashioned a text which develops models, the basis for software tools for conceptual design. The book clearly addresses both analysis and design with sharp attention to supplying mathematical correctness and providing physical insight. A software supplement accompanies the text in a student version.
Distillation Design and Control Using Aspen Simulation
Author: William L. Luyben
Publisher: John Wiley & Sons
ISBN: 0471785245
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
A timely treatment of distillationcombining steady-state designand dynamic controllability As the world continues to seek new sources of energy, the distillation process remains one of the most important separation methods in the chemical, petroleum, and energy industries. And as new renewable sources of energy and chemical feedstocks become more universally utilized, the issues of distillation design and control will remain vital to a future sustainable lifestyle. Distillation Design and Control Using Aspen Simulation introduces the current status and future implications of this vital technology from the dual perspectives of steady-state design and dynamics. Where traditional design texts have focused mainly on the steady-state economic aspects of distillation design, William Luyben also addresses such issues as dynamic performance in the face of disturbances. Utilizing the commercial simulators Aspen Plus and Aspen Dynamics, the text guides future and practicing chemical engineers first in the development of optimal steady-state designs of distillation systems, and then in the development of effective control structures. Unique features of the text include: * In-depth coverage of the dynamics of column design to help develop effective control structures for distillation columns * Development of rigorous simulations of single distillation columns and sequences of columns * Coverage of design and control of petroleum fractionators Encompassing nearly four decades of research and practical developments in this dynamic field, the text represents an important reference for both students and experienced engineers faced with distillation problems.
Publisher: John Wiley & Sons
ISBN: 0471785245
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
A timely treatment of distillationcombining steady-state designand dynamic controllability As the world continues to seek new sources of energy, the distillation process remains one of the most important separation methods in the chemical, petroleum, and energy industries. And as new renewable sources of energy and chemical feedstocks become more universally utilized, the issues of distillation design and control will remain vital to a future sustainable lifestyle. Distillation Design and Control Using Aspen Simulation introduces the current status and future implications of this vital technology from the dual perspectives of steady-state design and dynamics. Where traditional design texts have focused mainly on the steady-state economic aspects of distillation design, William Luyben also addresses such issues as dynamic performance in the face of disturbances. Utilizing the commercial simulators Aspen Plus and Aspen Dynamics, the text guides future and practicing chemical engineers first in the development of optimal steady-state designs of distillation systems, and then in the development of effective control structures. Unique features of the text include: * In-depth coverage of the dynamics of column design to help develop effective control structures for distillation columns * Development of rigorous simulations of single distillation columns and sequences of columns * Coverage of design and control of petroleum fractionators Encompassing nearly four decades of research and practical developments in this dynamic field, the text represents an important reference for both students and experienced engineers faced with distillation problems.
Advanced Distillation Technologies
Author: Anton A. Kiss
Publisher: John Wiley & Sons
ISBN: 1118544811
Category : Science
Languages : en
Pages : 301
Book Description
Distillation has historically been the main method for separating mixtures in the chemical process industry. However, despite the flexibility and widespread use of distillation processes, they still remain extremely energy inefficient. Increased optimization and novel distillation concepts can deliver substantial benefits, not just in terms of significantly lower energy use, but also in reducing capital investment and improving eco-efficiency. While likely to remain the separation technology of choice for the next few decades, there is no doubt that distillation technologies need to make radical changes in order to meet the demands of the energy-conscious society. Advanced Distillation Technologies: Design, Control and Applications gives a deep and broad insight into integrated separations using non-conventional arrangements, including both current and upcoming process intensification technologies. It includes: Key concepts in distillation technology Principles of design, control, sizing and economics of distillation Dividing-wall column (DWC) – design, configurations, optimal operation and energy efficient and advanced control DWC applications in ternary separations, azeotropic, extractive and reactive distillation Heat integrated distillation column (HIDiC) – design, equipment and configurations Heat-pump assisted applications (MVR, TVR, AHP, CHRP, TAHP and others) Cyclic distillation technology – concepts, modeling approach, design and control issues Reactive distillation – fundamentals, equipment, applications, feasibility scheme Results of rigorous simulations in Mathworks Matlab & Simulink, Aspen Plus, Dynamics and Custom Modeler Containing abundant examples and industrial case studies, this is a unique resource that tackles the most advanced distillation technologies – all the way from the conceptual design to practical implementation. The author of Advanced Distillation Technologies, Dr. Ir. Anton A. Kiss, has been awarded the Hoogewerff Jongerenprijs 2013. Find out more (website in Dutch)...
Publisher: John Wiley & Sons
ISBN: 1118544811
Category : Science
Languages : en
Pages : 301
Book Description
Distillation has historically been the main method for separating mixtures in the chemical process industry. However, despite the flexibility and widespread use of distillation processes, they still remain extremely energy inefficient. Increased optimization and novel distillation concepts can deliver substantial benefits, not just in terms of significantly lower energy use, but also in reducing capital investment and improving eco-efficiency. While likely to remain the separation technology of choice for the next few decades, there is no doubt that distillation technologies need to make radical changes in order to meet the demands of the energy-conscious society. Advanced Distillation Technologies: Design, Control and Applications gives a deep and broad insight into integrated separations using non-conventional arrangements, including both current and upcoming process intensification technologies. It includes: Key concepts in distillation technology Principles of design, control, sizing and economics of distillation Dividing-wall column (DWC) – design, configurations, optimal operation and energy efficient and advanced control DWC applications in ternary separations, azeotropic, extractive and reactive distillation Heat integrated distillation column (HIDiC) – design, equipment and configurations Heat-pump assisted applications (MVR, TVR, AHP, CHRP, TAHP and others) Cyclic distillation technology – concepts, modeling approach, design and control issues Reactive distillation – fundamentals, equipment, applications, feasibility scheme Results of rigorous simulations in Mathworks Matlab & Simulink, Aspen Plus, Dynamics and Custom Modeler Containing abundant examples and industrial case studies, this is a unique resource that tackles the most advanced distillation technologies – all the way from the conceptual design to practical implementation. The author of Advanced Distillation Technologies, Dr. Ir. Anton A. Kiss, has been awarded the Hoogewerff Jongerenprijs 2013. Find out more (website in Dutch)...
Chemical Engineering Design
Author: Gavin Towler
Publisher: Elsevier
ISBN: 0080966608
Category : Technology & Engineering
Languages : en
Pages : 1321
Book Description
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
Publisher: Elsevier
ISBN: 0080966608
Category : Technology & Engineering
Languages : en
Pages : 1321
Book Description
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
Distillation
Author: Johann G. Stichlmair
Publisher: John Wiley & Sons
ISBN: 1119414687
Category : Science
Languages : en
Pages : 688
Book Description
Distillation Principles and Practice Second Edition covers all the main aspects of distillation including the thermodynamics of vapor/liquid equilibrium, the principles of distillation, the synthesis of distillation processes, the design of the equipment, and the control of process operation. Most textbooks deal in detail with the principles and laws of distilling binary mixtures. When it comes to multi-component mixtures, they refer to computer software nowadays available. One of the special features of the second edition is a clear and easy understandable presentation of the principles and laws of ternary distillation. The right understanding of ternary distillation is the link to a better understanding of multi-component distillation. Ternary distillation is the basis for a conceptual process design, for separating azeotropic mixtures by using an entrainer, and for reactive distillation, which is a rapidly developing field of distillation. Another special feature of the book is the design of distillation equipment, i.e. tray columns and packed columns. In practice, empirical know-how is preferably used in many companies, often in form of empirical equations, which are not even dimensionally correct. The objective of the proposed book is the derivation of the relevant equations for column design based on first principles. The field of column design is permanently developing with respect to the type of equipment used and the know-how of two-phase flow and interfacial mass transfer.
Publisher: John Wiley & Sons
ISBN: 1119414687
Category : Science
Languages : en
Pages : 688
Book Description
Distillation Principles and Practice Second Edition covers all the main aspects of distillation including the thermodynamics of vapor/liquid equilibrium, the principles of distillation, the synthesis of distillation processes, the design of the equipment, and the control of process operation. Most textbooks deal in detail with the principles and laws of distilling binary mixtures. When it comes to multi-component mixtures, they refer to computer software nowadays available. One of the special features of the second edition is a clear and easy understandable presentation of the principles and laws of ternary distillation. The right understanding of ternary distillation is the link to a better understanding of multi-component distillation. Ternary distillation is the basis for a conceptual process design, for separating azeotropic mixtures by using an entrainer, and for reactive distillation, which is a rapidly developing field of distillation. Another special feature of the book is the design of distillation equipment, i.e. tray columns and packed columns. In practice, empirical know-how is preferably used in many companies, often in form of empirical equations, which are not even dimensionally correct. The objective of the proposed book is the derivation of the relevant equations for column design based on first principles. The field of column design is permanently developing with respect to the type of equipment used and the know-how of two-phase flow and interfacial mass transfer.
Practical Distillation Control
Author: W.L. Luyben
Publisher: Springer Science & Business Media
ISBN: 1475702779
Category : Science
Languages : en
Pages : 547
Book Description
Distillation column control has been the the "Lehigh inquisition" and survived! So it subject of many, many papers over the last has been tested by the fire of both actual half century. Several books have been de review by a hard-nosed plant experience and voted to various aspects of the subject. The group of practically oriented skeptics. technology is quite extensive and diffuse. In selecting the authors and the topics, There are also many conflicting opinions the emphasis has been on keeping the ma about some of the important questions. terial practical and useful, so some subjects We hope that the collection under one that are currently of mathematical and the cover of contributions from many of the oretical interest, but have not been demon leading authorities in the field of distillation strated to have practical importance, have control will help to consolidate, unify, and not been included. clarify some of this vast technology. The The book is divided about half and half contributing authors of this book represent between methodology and specific applica tion examples. Chapters 3 through 14 dis both industrial and academic perspectives, and their cumulative experience in the area cuss techniques and methods that have of distillation control adds up to over 400 proven themselves to be useful tools in at tacking distillation control problems.
Publisher: Springer Science & Business Media
ISBN: 1475702779
Category : Science
Languages : en
Pages : 547
Book Description
Distillation column control has been the the "Lehigh inquisition" and survived! So it subject of many, many papers over the last has been tested by the fire of both actual half century. Several books have been de review by a hard-nosed plant experience and voted to various aspects of the subject. The group of practically oriented skeptics. technology is quite extensive and diffuse. In selecting the authors and the topics, There are also many conflicting opinions the emphasis has been on keeping the ma about some of the important questions. terial practical and useful, so some subjects We hope that the collection under one that are currently of mathematical and the cover of contributions from many of the oretical interest, but have not been demon leading authorities in the field of distillation strated to have practical importance, have control will help to consolidate, unify, and not been included. clarify some of this vast technology. The The book is divided about half and half contributing authors of this book represent between methodology and specific applica tion examples. Chapters 3 through 14 dis both industrial and academic perspectives, and their cumulative experience in the area cuss techniques and methods that have of distillation control adds up to over 400 proven themselves to be useful tools in at tacking distillation control problems.
Azeotropic and Extractive Distillation
Author: Edward Jack Hoffman
Publisher: Krieger Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 338
Book Description
Publisher: Krieger Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 338
Book Description
Integrated Process Design and Operational Optimization via Multiparametric Programming
Author: Baris Burnak
Publisher: Springer Nature
ISBN: 3031020898
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
This book presents a comprehensive optimization-based theory and framework that exploits the synergistic interactions and tradeoffs between process design and operational decisions that span different time scales. Conventional methods in the process industry often isolate decision making mechanisms with a hierarchical information flow to achieve tractable problems, risking suboptimal, even infeasible operations. In this book, foundations of a systematic model-based strategy for simultaneous process design, scheduling, and control optimization is detailed to achieve reduced cost and improved energy consumption in process systems. The material covered in this book is well suited for the use of industrial practitioners, academics, and researchers. In Chapter 1, a historical perspective on the milestones in model-based design optimization techniques is presented along with an overview of the state-of-the-art mathematical tools to solve the resulting complex problems. Chapters 2 and 3 discuss two fundamental concepts that are essential for the reader. These concepts are (i) mixed integer dynamic optimization problems and two algorithms to solve this class of optimization problems, and (ii) developing a model based multiparametric programming model predictive control. These tools are used to systematically evaluate the tradeoffs between different time-scale decisions based on a single high-fidelity model, as demonstrated on (i) design and control, (ii) scheduling and control, and (iii) design, scheduling, and control problems. We present illustrative examples on chemical processing units, including continuous stirred tank reactors, distillation columns, and combined heat and power regeneration units, along with discussions of other relevant work in the literature for each class of problems.
Publisher: Springer Nature
ISBN: 3031020898
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
This book presents a comprehensive optimization-based theory and framework that exploits the synergistic interactions and tradeoffs between process design and operational decisions that span different time scales. Conventional methods in the process industry often isolate decision making mechanisms with a hierarchical information flow to achieve tractable problems, risking suboptimal, even infeasible operations. In this book, foundations of a systematic model-based strategy for simultaneous process design, scheduling, and control optimization is detailed to achieve reduced cost and improved energy consumption in process systems. The material covered in this book is well suited for the use of industrial practitioners, academics, and researchers. In Chapter 1, a historical perspective on the milestones in model-based design optimization techniques is presented along with an overview of the state-of-the-art mathematical tools to solve the resulting complex problems. Chapters 2 and 3 discuss two fundamental concepts that are essential for the reader. These concepts are (i) mixed integer dynamic optimization problems and two algorithms to solve this class of optimization problems, and (ii) developing a model based multiparametric programming model predictive control. These tools are used to systematically evaluate the tradeoffs between different time-scale decisions based on a single high-fidelity model, as demonstrated on (i) design and control, (ii) scheduling and control, and (iii) design, scheduling, and control problems. We present illustrative examples on chemical processing units, including continuous stirred tank reactors, distillation columns, and combined heat and power regeneration units, along with discussions of other relevant work in the literature for each class of problems.