Design and Analysis of a Poled-polymer Electro-optic Modulator with a Strip-loaded Waveguide Structure PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design and Analysis of a Poled-polymer Electro-optic Modulator with a Strip-loaded Waveguide Structure PDF full book. Access full book title Design and Analysis of a Poled-polymer Electro-optic Modulator with a Strip-loaded Waveguide Structure by Antonio Arthur Davis. Download full books in PDF and EPUB format.

Design and Analysis of a Poled-polymer Electro-optic Modulator with a Strip-loaded Waveguide Structure

Design and Analysis of a Poled-polymer Electro-optic Modulator with a Strip-loaded Waveguide Structure PDF Author: Antonio Arthur Davis
Publisher:
ISBN:
Category : Optical wave guides
Languages : en
Pages : 192

Book Description
To fully utilize the advances of electro-optic (EO) polymer research, a detail design and model of a triple stacked poled-polymer, electro-optic waveguide modulator was developed to provide guidance in the selection of cladding layers and demonstrate how the mode conditions affect the overall device performance. Waveguide devices depend not only on the EO materials used in the core, but also on the cladding materials. In contrast to most of the research that has focused on molecular engineering of the electro-optically active materials to improve the core properties of the waveguide, this work studied the effects of cladding material properties to improve overall device performance of an electro-optic waveguide modulator. Various, commercially available polymer materials were identified and investigated for potential cladding layers according to their optical, electrical, process ability and film casting properties. A poled-polymer, strip-loaded waveguide, EO modulator is designed and analyzed in terms of single mode conditions, optical loss due to the metal electrodes, modulation efficiency, and mode size. Two designs were compared: Design 1 optimized the half-wave voltage for a single-arm modulator (Vpi = 2.5 V) with a nearly symmetric waveguide by maximizing modulation efficiency and minimizing the overall thickness of the waveguide; Design 2 optimized the insertion loss (6 dB) with a strongly asymmetric waveguide by maximizing the overall mode size to most efficiently overlap with a single mode fiber. High frequency analysis of a microstrip electrode showed a modulator with a push-pull scheme can be fabricated with half-wave voltage (Vpi) of 4.0 V for Design 1 and 5.1 V for Design 2 at 3 GHz. Some general guidelines in the design of a poled-polymer electro-optic modulator incorporating a strip-loaded waveguide structure are suggested. First, the core layer thickness and ridge width supporting single mode propagation should be fabricated as large as possible by increases the asymmetry of the refractive index between the top and bottom cladding layer. Second, the thicknesses of the top and bottom cladding layers must be optimized through an analysis of the waveguide mode amplitude distribution so that the electrode-associated optical loss is minimized to a required level while simultaneously the total thickness of the waveguide is minimized. The ridge structure greatly simplifies fabrication procedures, reduces fabrication steps and eliminates propagation losses due to roughness of etched sidewalls. The results of the analysis were modeled in beam propagation software to confirm the ideal conditions for single mode propagation.

Design and Analysis of a Poled-polymer Electro-optic Modulator with a Strip-loaded Waveguide Structure

Design and Analysis of a Poled-polymer Electro-optic Modulator with a Strip-loaded Waveguide Structure PDF Author: Antonio Arthur Davis
Publisher:
ISBN:
Category : Optical wave guides
Languages : en
Pages : 192

Book Description
To fully utilize the advances of electro-optic (EO) polymer research, a detail design and model of a triple stacked poled-polymer, electro-optic waveguide modulator was developed to provide guidance in the selection of cladding layers and demonstrate how the mode conditions affect the overall device performance. Waveguide devices depend not only on the EO materials used in the core, but also on the cladding materials. In contrast to most of the research that has focused on molecular engineering of the electro-optically active materials to improve the core properties of the waveguide, this work studied the effects of cladding material properties to improve overall device performance of an electro-optic waveguide modulator. Various, commercially available polymer materials were identified and investigated for potential cladding layers according to their optical, electrical, process ability and film casting properties. A poled-polymer, strip-loaded waveguide, EO modulator is designed and analyzed in terms of single mode conditions, optical loss due to the metal electrodes, modulation efficiency, and mode size. Two designs were compared: Design 1 optimized the half-wave voltage for a single-arm modulator (Vpi = 2.5 V) with a nearly symmetric waveguide by maximizing modulation efficiency and minimizing the overall thickness of the waveguide; Design 2 optimized the insertion loss (6 dB) with a strongly asymmetric waveguide by maximizing the overall mode size to most efficiently overlap with a single mode fiber. High frequency analysis of a microstrip electrode showed a modulator with a push-pull scheme can be fabricated with half-wave voltage (Vpi) of 4.0 V for Design 1 and 5.1 V for Design 2 at 3 GHz. Some general guidelines in the design of a poled-polymer electro-optic modulator incorporating a strip-loaded waveguide structure are suggested. First, the core layer thickness and ridge width supporting single mode propagation should be fabricated as large as possible by increases the asymmetry of the refractive index between the top and bottom cladding layer. Second, the thicknesses of the top and bottom cladding layers must be optimized through an analysis of the waveguide mode amplitude distribution so that the electrode-associated optical loss is minimized to a required level while simultaneously the total thickness of the waveguide is minimized. The ridge structure greatly simplifies fabrication procedures, reduces fabrication steps and eliminates propagation losses due to roughness of etched sidewalls. The results of the analysis were modeled in beam propagation software to confirm the ideal conditions for single mode propagation.

Fabrication of a Deoxyribonucleic Acid Polymer Ridge Waveguide Electro-optic Modulator by Nanoimprint Lithography

Fabrication of a Deoxyribonucleic Acid Polymer Ridge Waveguide Electro-optic Modulator by Nanoimprint Lithography PDF Author: Emily Marie Fehrman Cory
Publisher:
ISBN:
Category : Biopolymers
Languages : en
Pages : 139

Book Description
The purpose of this dissertation is to develop the nanoimprint lithography (NIL) technique for direct patterning of the deoxyribonucleic acid biopolymer DNA-CTMA. The Mach Zehnder modulator was chosen as the test device to demonstrate the NIL patterning technique for DNA-CTMA as well as the unique optical and electrical properties of the DNA-CTMA as a cladding material for poled electro-optic polymers. Towards this goal, a DNA-CTMA clad inverted ridge waveguide is demonstrated at 633 nm and 1550 nm, the structure of which is patterned directly in the DNA-CTMA cladding by NIL. Additionally, EO modulation is demonstrated in a slab waveguide structure with DNA-CTMA cladding and SEO110 EO polymer core.Marine-derived deoxyribonucleic acid biopolymer (DNA-CTMA) is a green, nontoxic, low cost optical polymer material derived from waste products of the salmon fishing industry. It exhibits low optical loss at 1550 nm, forms a thin flexible film, is compatible with existing poled polymer technologies, increases the poling efficiency when used as a low resistivity cladding layer, and is thermally stable to 200 oC. Due to chemical incompatibility with the photoresists and the associated solvents, NIL has been developed for patterning the DNA biopolymer cladding to form an inverted ridge waveguide for the basis of the Mach Zehnder modulator.While DNA-CTMA presents significant advantages over other commonly used cladding materials for the 1550 nm wavelength range, one of the commonly used bands for optical communications, the mechanical properties and environmental susceptibility of the material poses significant fabrication challenges. A study of the effects of optical and mechanical effects of environmental humidity exposure are presented for the DNA-CTMA and SEO110 polymers used in the inverted ridge waveguide. While the soft, flexible nature of the DNA-CTMA is desirable for certain applications, this presents a challenge in producing a clean polished window for optical coupling. Incompatibility with standard polishing techniques has led to the study of focused ion-beam milling (FIB) as a technique for polishing the DNA-CTMA film edge.This dissertation presents a demonstration at 633 nm and 1550 nm of an inverted ridge waveguide patterned by NIL in the DNA-CTMA cladding. Optical modulation in a slab waveguide structure consisting of the same polymer layers as the inverted ridge waveguide is also demonstrated, which together with waveguiding in an inverted ridge waveguide presents the case for the DNA-CTMA clad Mach Zehnder modulator. In this dissertation the FIB polishing technique for DNA-CTMA is demonstrated as a means to overcome the challenges of mechanically polishing the DNA-CTMA polymer. A study of the optical and mechanical effects of environmental exposure for DNA-CTMA and SEO110 is presented along with an analysis polymer film stresses as a result of fabrication processes and environmental exposures. This dissertation represents a significant advancement in fabrication techniques for DNA-CTMA thin films with the development of NIL for DNA-CTMA and is a significant step towards fully patterned DNA-CTMA EO waveguide devices.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 812

Book Description


A Study of Poled Films of Advanced Electrooptic Polymers

A Study of Poled Films of Advanced Electrooptic Polymers PDF Author: Robert R. Krchnavek
Publisher:
ISBN:
Category : Optical wave guides
Languages : en
Pages : 17

Book Description


Broadband Optical Modulators

Broadband Optical Modulators PDF Author: Antao Chen
Publisher: CRC Press
ISBN: 1439825076
Category : Science
Languages : en
Pages : 555

Book Description
"provides the full, exciting story of optical modulators. a comprehensive review, from the fundamental science to the material and processing technology to the optimized device design to the multitude of applications for which broadband optical modulators bring great value. Especially valuable in my view is that the authors are internationally

Fiber-coupled Polymeric Electro-optic Modulator

Fiber-coupled Polymeric Electro-optic Modulator PDF Author: Richard Andrew Hill
Publisher:
ISBN:
Category :
Languages : en
Pages : 394

Book Description


Numerical Analysis of an Electro-optic Polymer Core Wave Guide for High-speed Optical Modulation

Numerical Analysis of an Electro-optic Polymer Core Wave Guide for High-speed Optical Modulation PDF Author: Michael Vernon Pack
Publisher:
ISBN:
Category : Fiber optics
Languages : en
Pages : 128

Book Description


The Engineering Index Annual

The Engineering Index Annual PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 2264

Book Description
Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.

Electrical & Electronics Abstracts

Electrical & Electronics Abstracts PDF Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 2240

Book Description


Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781720503897
Category :
Languages : en
Pages : 44

Book Description
The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.Sarkisov, Sergey S.Marshall Space Flight CenterCOUPLERS; DATA TRANSMISSION; ELECTRO-OPTICS; MODULATORS; WAVEGUIDES; OPTICAL COMMUNICATION; BANDWIDTH; MODULATION; ORGANIC MATERIALS; SINGLE CRYSTALS; THIN FILMS; PRISMS