Derivatives of Links: Milnor's Concordance Invariants and Massey's Products PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Derivatives of Links: Milnor's Concordance Invariants and Massey's Products PDF full book. Access full book title Derivatives of Links: Milnor's Concordance Invariants and Massey's Products by Tim D. Cochran. Download full books in PDF and EPUB format.

Derivatives of Links: Milnor's Concordance Invariants and Massey's Products

Derivatives of Links: Milnor's Concordance Invariants and Massey's Products PDF Author: Tim D. Cochran
Publisher: American Mathematical Soc.
ISBN: 9780821824894
Category : Mathematics
Languages : en
Pages : 102

Book Description
We investigate higher-order cohomology operations (Massey products) on complements of links of circles in [italic]S3. These are known to be essentially equivalent to the [lowercase Greek]Mu [with macron]-invariants of John Milnor, which detect whether or not the longitudes of the link lie in the [italic]n[superscript]th term of the lower central series of the fundamental group of the link compliment. We define a geometric "derivative" on the set of all links and use this to define higher-order linking numbers which are shown to be "pieces" of Massey products.

Derivatives of Links: Milnor's Concordance Invariants and Massey's Products

Derivatives of Links: Milnor's Concordance Invariants and Massey's Products PDF Author: Tim D. Cochran
Publisher: American Mathematical Soc.
ISBN: 9780821824894
Category : Mathematics
Languages : en
Pages : 102

Book Description
We investigate higher-order cohomology operations (Massey products) on complements of links of circles in [italic]S3. These are known to be essentially equivalent to the [lowercase Greek]Mu [with macron]-invariants of John Milnor, which detect whether or not the longitudes of the link lie in the [italic]n[superscript]th term of the lower central series of the fundamental group of the link compliment. We define a geometric "derivative" on the set of all links and use this to define higher-order linking numbers which are shown to be "pieces" of Massey products.

Encyclopedia of Knot Theory

Encyclopedia of Knot Theory PDF Author: Colin Adams
Publisher: CRC Press
ISBN: 1000222381
Category : Education
Languages : en
Pages : 954

Book Description
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory

Low Dimensional Topology

Low Dimensional Topology PDF Author: Hanna Nencka
Publisher: American Mathematical Soc.
ISBN: 0821808842
Category : Mathematics
Languages : en
Pages : 266

Book Description
"The book has two main parts. The first is devoted to the Poincare conjecture, characterizations of PL-manifolds, covering quadratic forms of links and to categories in low dimensional topology that appear in connection with conformal and quantum field theory.

A Survey of Knot Theory

A Survey of Knot Theory PDF Author: Akio Kawauchi
Publisher: Birkhäuser
ISBN: 3034892276
Category : Mathematics
Languages : en
Pages : 431

Book Description
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.

Knots, Links, Spatial Graphs, and Algebraic Invariants

Knots, Links, Spatial Graphs, and Algebraic Invariants PDF Author: Erica Flapan
Publisher: American Mathematical Soc.
ISBN: 1470428474
Category : Mathematics
Languages : en
Pages : 202

Book Description
This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.

Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial

Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial PDF Author: Anatoly M. Vershik
Publisher: American Mathematical Soc.
ISBN: 1470456648
Category : Education
Languages : en
Pages : 345

Book Description
Vladimir Abramovich Rokhlin (8/23/1919–12/03/1984) was one of the leading Russian mathematicians of the second part of the twentieth century. His main achievements were in algebraic topology, real algebraic geometry, and ergodic theory. The volume contains the proceedings of the Conference on Topology, Geometry, and Dynamics: V. A. Rokhlin-100, held from August 19–23, 2019, at The Euler International Mathematics Institute and the Steklov Institute of Mathematics, St. Petersburg, Russia. The articles deal with topology of manifolds, theory of cobordisms, knot theory, geometry of real algebraic manifolds and dynamical systems and related topics. The book also contains Rokhlin's biography supplemented with copies of actual very interesting documents.

Knots 90

Knots 90 PDF Author: Akio Kawauchi
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110875918
Category : Mathematics
Languages : en
Pages : 652

Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Intelligence of Low Dimensional Topology 2006

Intelligence of Low Dimensional Topology 2006 PDF Author: J. Scott Carter
Publisher: World Scientific
ISBN: 9812770968
Category : Mathematics
Languages : en
Pages : 398

Book Description
This volume gathers the contributions from the international conference Intelligence of Low Dimensional Topology 2006, which took place in Hiroshima in 2006. The aim of this volume is to promote research in low dimensional topology with the focus on knot theory and related topics. The papers include comprehensive reviews and some latest results.

The Disc Embedding Theorem

The Disc Embedding Theorem PDF Author: Stefan Behrens
Publisher: Oxford University Press
ISBN: 0198841310
Category : Mathematics
Languages : en
Pages : 492

Book Description
The Disc Embedding Theorem contains the first thorough and approachable exposition of Freedman's proof of the disc embedding theorem.

Grid Homology for Knots and Links

Grid Homology for Knots and Links PDF Author: Peter S. Ozsváth
Publisher: American Mathematical Soc.
ISBN: 1470417375
Category : Education
Languages : en
Pages : 423

Book Description
Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.