Dependence of Power and Efficiency of A1GaN/GaN HEMT's on the Load Resistance for Class B Bias

Dependence of Power and Efficiency of A1GaN/GaN HEMT's on the Load Resistance for Class B Bias PDF Author: V. Kaper
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
The material properties of GaN and the AlGaN/GaN heterostructure such as high breakdown field and high sheet charge density, allow AlGaN/GaN HEMTs to be operated at significantly higher drain bias voltages as compared to other Ill-V compound semiconductor FETs 1. As expected, larger RF voltage and current swings result in higher nonnalized output power at microwave frequencies. AlGaN/GaN HEMT's are capable of generating output power density in excess of 10W/mm 2, 3 in X-band, which is at least an order of magnitude larger than what is obtainable with GaAs FETs. In this paper, we will discuss the effect of the load impedance on measured output power (Pout) and efficiency (eta) at various drain bias conditions in Class B mode. Dynamic loadlines extracted at the device's output are used for analysis of the trade-off between voltage and current swings at different load resistances and its effect on output power and efficiency.

Proceedings ... IEEE/Cornell Conference on High Performance Devices

Proceedings ... IEEE/Cornell Conference on High Performance Devices PDF Author:
Publisher:
ISBN:
Category : Integrated circuits
Languages : en
Pages : 534

Book Description


Proceedings

Proceedings PDF Author:
Publisher:
ISBN:
Category : Compound semiconductors
Languages : en
Pages : 526

Book Description


ARFTG Conference Digest

ARFTG Conference Digest PDF Author:
Publisher:
ISBN:
Category : Microwaves
Languages : en
Pages : 206

Book Description


Bias Dependence of Radiation Response and Reliability of AlGaN/GaN HEMTs

Bias Dependence of Radiation Response and Reliability of AlGaN/GaN HEMTs PDF Author: Rong Jiang
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Book Description


GaN-Based HEMTs for High Voltage Operation: Design, Technology and Characterization

GaN-Based HEMTs for High Voltage Operation: Design, Technology and Characterization PDF Author: Eldad Bahat-Treidel
Publisher: Cuvillier Verlag
ISBN: 3736940947
Category : Science
Languages : en
Pages : 220

Book Description
Gallium nitride (GaN)-based High Electron Mobility Transistors (HEMTs) for high voltage, high power switching and regulating for space applications are studied in this work. Efficient power switching is associated with operation in high OFF-state blocking voltage while keeping the ON-state resistance, the dynamic dispersion and leakage currents as low as possible. The potential of such devices to operate at high voltages is limited by a chain of factors such as subthreshold leakages and the device geometry. Blocking voltage enhancement is a complicated problem that requires parallel methods for solution; epitaxial layers design, device structural and geometry design, and suitable semiconductor manufacturing technique. In this work physical-based device simulation as an engineering tool was developed. An overview on GaN-based HEMTs physical based device simulation using Silvaco-“ATLAS” is given. The simulation is utilized to analyze, give insight to the modes of operation of the device and for design and evaluation of innovative concepts. Physical-based models that describe the properties of the semiconductor material are introduced. A detailed description of the specific AlGaN/GaN HEMT structure definition and geometries are given along with the complex fine meshing requirements. Nitride-semiconductor specific material properties and their physical models are reviewed focusing on the energetic band structure, epitaxial strain tensor calculation in wurtzite materials and build-in polarization models. Special attention for thermal conductivity, carriers’ mobility and Schottky-gate-reverse-bias-tunneling is paid. Empirical parameters matching and adjustment of models parameters to match the experimental device measured results are discussed. An enhancement of breakdown voltage in AlxGa1-xN/GaN HEMT devices by increasing the electron confinement in the transistor channel using a low Al content AlyGa1-yN back-barrier layer structure is systematically studied. It is shown that the reduced sub-threshold drain-leakage current through the buffer layer postpones the punch-through and therefore shifts the breakdown of the device to higher voltages. It is also shown that the punch-through voltage (VPT) scales up with the device dimensions (gate to drain separation). An optimized electron confinement results both, in a scaling of breakdown voltage with device geometry and a significantly reduced sub-threshold drain and gate leakage currents. These beneficial properties are pronounced even further if gate recess technology is applied for device fabrication. For the systematic study a large variations of back-barrier epitaxial structures were grown on sapphire, n-type 4H-SiC and semi-insulating 4H-SiC substrates. The devices with 5 μm gate-drain separation grown on n-SiC owning Al0.05Ga0.95N and Al0.10Ga0.90N back-barrier exhibit 304 V and 0.43 m × cm2 and 342 V and 0.41 m × cm2 respectively. To investigate the impact of AlyGa1-yN back-barrier on the device properties the devices were characterized in DC along with microwave mode and robustness DC-step-stress test. Physical-based device simulations give insight in the respective electronic mechanisms and to the punch-through process that leads to device breakdown. Systematic study of GaN-based HEMT devices with insulating carbon-doped GaN back-barrier for high voltage operation is also presented. Suppression of the OFF-state sub-threshold drain leakage-currents enables breakdown voltage enhancement over 1000 V with low ON-state resistance. The devices with 5 μm gate-drain separation on SI-SiC and 7 μm gate-drain separation on n-SiC exhibit 938 V and 0.39 m × cm2 and 942 V and 0.39 m × cm2 respectively. Power device figure of merit of ~2.3 × 109 V2/-cm2 was calculated for these devices. The impacts of variations of carbon doping concentration, GaN channel thickness and substrates are evaluated. Trade-off considerations in ON-state resistance and of current collapse are addressed. A novel GaN-based HEMTs with innovative planar Multiple-Grating-Field-Plates (MGFPs) for high voltage operation are described. A synergy effect with additional electron channel confinement by using a heterojunction AlGaN back-barrier is demonstrated. Suppression of the OFF-state sub-threshold gate and drain leakage-currents enables breakdown voltage enhancement over 700 V and low ON-state resistance of 0.68 m × cm2. Such devices have a minor trade-off in ON-state resistance, lag factor, maximum oscillation frequency and cut-off frequency. Systematic study of the MGFP design and the effect of Al composition in the back-barrier are described. Physics-based device simulation results give insight into electric field distribution and charge carrier concentration depending on field-plate design. The GaN superior material breakdown strength properties are not always a guarantee for high voltage devices. In addition to superior epitaxial growth design and optimization for high voltage operation the device geometrical layout design and the device manufacturing process design and parameters optimization are important criteria for breakdown voltage enhancement. Smart layout prevent immature breakdown due to lateral proximity of highly biased interconnects. Optimization of inter device isolation designed for high voltage prevents substantial subthreshold leakage. An example for high voltage test device layout design and an example for critical inter-device insulation manufacturing process optimization are presented. While major efforts are being made to improve the forward blocking performance, devices with reverse blocking capability are also desired in a number of applications. A novel GaN-based HEMT with reverse blocking capability for Class-S switch-mode amplifiers is introduced. The high voltage protection is achieved by introducing an integrated recessed Schottky contact as a drain electrode. Results from our Schottky-drain HEMT demonstrate an excellent reverse blocking with minor trade-off in the ON-state resistance for the complete device. The excellent quality of the forward diode characteristics indicates high robustness of the recess process. The reverse blocking capability of the diode is better than –110 V. Physical-based device simulations give insight in the respective electronic mechanisms. Zusammenfassung In dieser Arbeit wurden Galliumnitrid (GaN)-basierte Hochspannungs-HEMTs (High Electron Mobility Transistor) für Hochleistungsschalt- und Regelanwendungen in der Raumfahrt untersucht. Effizientes Leistungsschalten erfordert einen Betrieb bei hohen Sperrspannungen gepaart mit niedrigem Einschaltwiderstand, geringer dynamischer Dispersion und minimalen Leckströmen. Dabei wird das aus dem Halbleitermaterial herrührende Potential für extrem spannungsfeste Transistoren aufgrund mehrerer Faktoren aus dem lateralen und dem vertikalen Bauelementedesign oft nicht erreicht. Physikalisch-basierte Simulationswerkzeuge für die Bauelemente wurden daher entwickelt. Die damit durchgeführte Analyse der unterschiedlichen Transistorbetriebszustände ermöglichte das Entwickeln innovativer Bauelementdesignkonzepte. Das Erhöhen der Bauelementsperrspannung erfordert parallele und ineinandergreifende Lösungsansätze für die Epitaxieschichten, das strukturelle und das geometrische Design und für die Prozessierungstechnologie. Neuartige Bauelementstrukturen mit einer rückseitigen Kanalbarriere (back-barrier) aus AlGaN oder Kohlenstoff-dotierem GaN in Kombination mit neuartigen geometrischen Strukturen wie den Mehrfachgitterfeldplatten (MGFP, Multiple-Grating-Field-Plate) wurden untersucht. Die elektrische Gleichspannungscharakterisierung zeigte dabei eine signifikante Verringerung der Leckströme im gesperrten Zustand. Dies resultierte bei nach wie vor sehr kleinem Einschaltwiderstand in einer Durchbruchspannungserhöhung um das etwa Zehnfache auf über 1000 V. Vorzeitige Spannungsüberschläge aufgrund von Feldstärkenspitzen an Verbindungsmetallisierungen werden durch ein geschickt gestaltetes Bauelementlayout verhindert. Eine Optimierung der Halbleiterisolierung zwischen den aktiven Strukturen führte auch im kV-Bereich zu vernachlässigbaren Leckströme. Während das Hauptaugenmerk der Arbeit auf der Erhöhung der Spannungsfestigkeit im Vorwärtsbetrieb des Transistors lag, ist für einige Anwendung auch ein rückwärtiges Sperren erwünscht. Für Schaltverstärker im S-Klassenbetrieb wurde ein neuartiger GaN-HEMT entwickelt, dessen rückwärtiges Sperrverhalten durch einen tiefgelegten Schottkykontakt als Drainelektrode hervorgerufen wird. Eine derartige Struktur ergab eine rückwärtige Spannungsfestigkeit von über 110 V.

Trapping Effects in AlGaN/GaN HEMTs for High Frequency Applications

Trapping Effects in AlGaN/GaN HEMTs for High Frequency Applications PDF Author: Chieh Kai Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 109

Book Description
Abstract: Any defect site existing in the AlGaN/GaN HEMTs can be electrically active during device operation. The activated defect site not only could lead to a degradation in the output characteristics but may introduce additional nonlinearity which seriously downgrades the values of devices for various applications. This motivates us to study the detailed path experimentally and theoretically how an electrically-activated defect site could impact the device performances during practical device operation. In this study, the g oal is (1) to give device engineers ideas on how further improvements can be devised to strengthen the existing GaN technology and (2) to provide circuit designers with better understanding on how to use GaN devices more efficiently for the development of reliable commercial GaN products for higher power applications in wireless systems. Single tone characterization results of AlGaN/GaN HEMTs for Class A operation are presented and compared. A new combined large signal network analyzer / deep level optical spectroscopy system is utilized to study the impact of illumination on the CW large-signal load line and small-signal S-parameters variations to identify the possible energy level of the trapping center responsible for the degradation of the device performance. A new pulsed-IV pulsed-RF "coldFET" technique is introduced to extract parasitic elements existing in the access regions of AlGaN/GaN HEMTs. The observation of bias-dependence is detailed and a simple semi-physical model is proposed which provides a satisfactory description of experimental results. The low-frequency noise, an important figure of merit in terms of reliability, is briefly-reviewed. Additive phase noise measurements are presented and the effects of illumination and load impedance are examined. A physical expression is derived and simulated which successfully establishes a relationship between the access resistance and the low-frequency noise and provides a qualitative description of the measurement results.

Device Characterization and Modeling of Large-Size GaN HEMTs

Device Characterization and Modeling of Large-Size GaN HEMTs PDF Author: Jaime Alberto Zamudio Flores
Publisher: kassel university press GmbH
ISBN: 3862193640
Category : Gallium nitride
Languages : en
Pages : 257

Book Description
This work presents a comprehensive modeling strategy for advanced large-size AlGaN/GaN HEMTs. A 22-element equivalent circuit with 12 extrinsic elements, including 6 capacitances, serves as small-signal model and as basis for a large-signal model. ANalysis of such capacitances leads to original equations, employed to form capacitance ratios. BAsic assumptions of existing parameter extractions for 22-element equivalent circuits are perfected: A) Required capacitance ratios are evaluated with device's top-view images. B) Influences of field plates and source air-bridges on these ratios are considered. The large-signal model contains a gate charge's non-quasi-static model and a dispersive-IDS model. THe extrinsic-to-intrinsic voltage transformation needed to calculate non-quasi-static parameters from small-signal parameters is improved with a new description for the measurement's boundary bias points. ALl IDS-model parameters, including time constants of charge-trapping and self-heating, are extracted using pulsed-DC IV and IDS-transient measurements, highlighting the modeling strategy's empirical character.

Investigation of Electrical Bias, Mechanical Stress, Temperature and Ambient Effect on AlGaN/GaN Hemt Time-Dependent Degradation

Investigation of Electrical Bias, Mechanical Stress, Temperature and Ambient Effect on AlGaN/GaN Hemt Time-Dependent Degradation PDF Author: Amit Gupta
Publisher:
ISBN:
Category :
Languages : en
Pages : 143

Book Description
AlGaN/GaN HEMT technology is promising for RF and high power applications. However commercial usability of this technology is currently hindered because of its limited electrical reliability which still remains a major concern. AlGaN/GaN HEMTs have been shown to degrade irreversibly under typical device operation and there is widespread disagreement on the underlying fundamental physics for the observed device degradation. Electrical degradation in AlGaN/GaN HEMTs due to DC stressing is studied typically by performing electrical step stress tests and a critical voltage is determined. Device degradation is characterized by changes measured in electrical parameters, such as increase in Rs and RD, decrease in IDsat, decrease in gm, Vt shift and sub-threshold change. The widely accepted theory attributes such degradation to the inverse piezoelectric effect. Electric field due to applied bias generates biaxial tensile stress which together with intrinsic stress from lattice mismatch increases the elastic energy of AlGaN layer.

AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications

AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications PDF Author: Jutta Kühn
Publisher: KIT Scientific Publishing
ISBN: 3866446152
Category : Power amplifiers
Languages : en
Pages : 264

Book Description
This work has arisen out of the strong demand for a superior power-added efficiency (PAE) of AlGaN/GaN high electron mobility transistor (HEMT) high-power amplifiers (HPAs) that are part of any advanced wireless multifunctional RF-system with limited prime energy. Different concepts and approaches on device and design level for PAE improvements are analyzed, e.g. structural and layout changes of the GaN transistor and advanced circuit design techniques for PAE improvements of GaN HEMT HPAs.