Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points PDF full book. Access full book title Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points by D. A. Russell. Download full books in PDF and EPUB format.

Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points

Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points PDF Author: D. A. Russell
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) formation of a density pedestal due to neutral fueling; (4)identification of convective transport by localized plasma 'blobs' in the SOL at high density and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (5) a new divertor-leg instability driven by a radial tilt of the divertor plate.

Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points

Density Effects on Tokamak Edge Turbulence and Transport with Magnetic X-points PDF Author: D. A. Russell
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) formation of a density pedestal due to neutral fueling; (4)identification of convective transport by localized plasma 'blobs' in the SOL at high density and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (5) a new divertor-leg instability driven by a radial tilt of the divertor plate.

Washington Journal

Washington Journal PDF Author:
Publisher:
ISBN:
Category : Cleveland (Ohio)
Languages : en
Pages : 21

Book Description
Journal of a trip to a GAR encampment in Washington, DC. Very detailed description of his trip to the White House. Includes description of a day spent sight seeing in Cleveland, OH on the return trip to Michigan.

Edge Gradient and Safety Factor Effects on Electrostatic Turbulent Transport in Tokamaks

Edge Gradient and Safety Factor Effects on Electrostatic Turbulent Transport in Tokamaks PDF Author: Ing Hwie Tan
Publisher:
ISBN:
Category :
Languages : en
Pages : 310

Book Description


Edge Gradient and Safety Factor Effects on Electrostatic Turbulent Transport in Tokamaks

Edge Gradient and Safety Factor Effects on Electrostatic Turbulent Transport in Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 76

Book Description
Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high qa discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low qa discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes.

Boundary Plasma Physics

Boundary Plasma Physics PDF Author: Fulvio Militello
Publisher: Springer Nature
ISBN: 3031173392
Category : Science
Languages : en
Pages : 534

Book Description
This book serves as an introduction to boundary plasma physics, providing an accessible entry point to the topic of plasma exhaust in magnetic confinement devices. While it delivers a concise, rigorous, and comprehensive account of all the major scientific topics relevant to those working on the subject, it also remains accessible and easy to consult due to its modular and compact structure. Beginning with the basic kinetic and fluid descriptions of plasma, and advancing through plasma-surface interactions, filamentary transport and plasma detachment, to conclude with a discussion of divertor configurations, this book represents a necessary and timely addition to the literature on the fast-growing field of boundary plasma physics. It will appeal to experienced theoreticians or experimentalists looking to enter the field as well as graduate students wishing to learn about it.

On the Edge of Magnetic Fusion Devices

On the Edge of Magnetic Fusion Devices PDF Author: Sergei Krasheninnikov
Publisher: Springer Nature
ISBN: 3030495949
Category : Science
Languages : en
Pages : 269

Book Description
This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704

Book Description


Thermal Ion Orbit Loss in Diverted Tokamaks and Its Role Approaching the L-H Transition

Thermal Ion Orbit Loss in Diverted Tokamaks and Its Role Approaching the L-H Transition PDF Author: Robert William Brzozowski
Publisher:
ISBN:
Category :
Languages : en
Pages : 228

Book Description
The exact nature of the physics governing the L-H transition seen in tokamak magnetic confinement experiments has eluded fusion researchers for several decades. To date, a first principles model for the transition does not exist. The improved particle and energy confinement realized by the suppression of turbulence in the post-transition H-mode motivates an understanding of the transition and the empirically known conditions necessary for its initiation, generically an input power threshold with key sensitivities to the edge electron density, main ion mass and charge, plasma configuration, divertor conditions, ∇B drift direction, etc. Modern consensus that an increase in the E x B shear at the plasma edge is responsible for the turbulence suppression and formation of a transport barrier invigorates research into possible driving mechanisms. The loss of thermal ions from the imperfectly confining magnetic field of a tokamak manifests as a steady-state radial current in the edge and has long been suspected to play a role in the generation of the E x B shear and hence the L-H transition.The body of this thesis presents the development of a model for the steady-state thermal orbit loss based on the identification of the phase-space loss cone. The presented model boasts several improvements over other loss cone models found in the literature, largely rooted in the careful consideration of local pitch angle scattering on ions within and near the velocity-space boundaries of projections of the phase-space loss cone to observation points in configuration-space. The probability that ions within the loss cone will be lost on a first orbit is estimated by comparing the rates of collisionally scattering out of the loss cone to the periods of orbit loss. The steady-state is determined by the rates of collisional loss cone refueling modified by the statistical chance of first orbit loss. A competition arises between the sufficiently large temperatures necessary for appreciable parts of the distribution to interact with the loss cone and the reduced rate of collisional refueling of high energy ions. The steady-state orbit loss current calculated by the model exhibits several features of the experimentally measured L-H transition power threshold not present in other models. The orbit loss current displays branching behaviors in the edge density, peaking at densities similar to those minimizing the required transition power on ASDEX Upgrade. Additionally, the loss current features the suspected strong ∇B drift direction asymmetry of the orbit loss. The unfavorable drift configuration requires about a factor of two greater input power to produce a similar orbit loss current seen in the favorable drift, again echoing a known behavior of the power threshold. Other explored features that suggest a promising connection between the thermal orbit losses and the transition are the main ion mass and the horizontal position of the X-point. The orbit loss current has been implemented into the edge fluid transport code SOLPS. The first order plasma response to the current is studied over the high-density branch of the loss current. The leading order effect is an increase in the magnitude of the edge Er well and the associated E x B shear. Over the explored parameter space, the input power necessary to reach some threshold Er magnitude lessens on the order of ∼ 10-20% in the presence of the loss current. Thermal ion orbit loss appears capable of influencing the onset of the L-H transition.

Studies of Turbulence and Flows in the DIII-D Tokamak

Studies of Turbulence and Flows in the DIII-D Tokamak PDF Author: Jon Clark Hillesheim
Publisher:
ISBN:
Category :
Languages : en
Pages : 307

Book Description
Understanding the turbulent transport of particles, momentum, and heat continues to be an important goal for magnetic confinement fusion energy research. The turbulence in tokamaks and other magnetic confinement devices is widely thought to arise due to linearly unstable gyroradius-scale modes. A long predicted characteristic of these linear instabilities is a critical gradient, where the modes are stable below a critical value related to the gradient providing free energy for the instability and unstable above it. In this dissertation, a critical gradient threshold for long wavelength ($k_{\theta} \rho_s \lesssim 0.4$) electron temperature fluctuations is reported, where the temperature fluctuations do not change, within uncertainties, below a threshold value in $L_{T_e}^{-1}=\nabla T_e / T_e$ and steadily increase above it. This principal result, the direct observation of a critical gradient for electron temperature fluctuations, is also the first observation of critical gradient behavior for \textit{any} locally measured turbulent quantity in the core of a high temperature plasma in a systematic experiment. The critical gradient was found to be $L_{T_e}^{-1}_{crit}=2.8 \pm 0.4 \ \mathrm{m}^{-1}$. The experimental value for the critical gradient quantitatively disagrees with analytical predictions for its value. In the experiment, the local value of $L_{T_e}^{-1}$ was systematically varied by changing the deposition location of electron cyclotron heating gyrotrons in the DIII-D tokamak. The temperature fluctuation measurements were acquired with a correlation electron cyclotron emission radiometer. The dimensionless parameter $\eta_e=L_{n_e}/L_{T_e}$ is found to describe both the temperature fluctuation threshold and a threshold observed in linear gyrofluid growth rate calculations over the measured wave numbers, where a rapid increase at $\eta_e \approx 2$ is observed in both. Doppler backscattering (DBS) measurements of intermediate-scale density fluctuations also show a frequency-localized increase on the electron diamagnetic side of the measured spectrum that increases with $L_{T_e}^{-1}$. Measurements of the crossphase angle between long wavelength electron density and temperature fluctuations, as well as measurements of long wavelength density fluctuation levels were also acquired. Multiple aspects of the fluctuation measurements and calculations are individually consistent with the attribution of the critical gradient to the $\nabla T_e$-driven trapped electron mode. The accumulated evidence strongly enforces this conclusion. The threshold value for the temperature fluctuation measurements was also within uncertainties of a critical gradient for the electron thermal diffusivity found through heat pulse analysis, above which the electron heat flux and electron temperature profile stiffness rapidly increased. Toroidal rotation was also systematically varied with neutral beam injection, which had little effect on the temperature fluctuation measurements. The crossphase measurements indicated the presence of different instabilities below the critical gradient depending on the neutral beam configuration, which is supported by linear gyrofluid calculations. In a second set of results reported in this dissertation, the geodesic acoustic mode is investigated in detail. Geodesic acoustic modes (GAMs) and zonal flows are nonlinearly driven, axisymmetric ($m=0,\ n=0$ potential) $E \times B$ flows, which are thought to play an important role in establishing the saturated level of turbulence in tokamaks. Zonal flows are linearly stable, but are driven to finite amplitude through nonlinear interaction with the turbulence. They are then thought to either shear apart the turbulent eddies or act as a catalyst to transfer energy to damped modes. Results are presented showing the GAM's observed spatial scales, temporal scales, and nonlinear interaction characteristics, which may have implications for the assumptions underpinning turbulence models towards the tokamak edge ($r/a \gtrsim 0.75$). Measurements in the DIII-D tokamak have been made with multichannel Doppler backscattering systems at toroidal locations separated by $180^{\circ}$; analysis reveals that the GAM is highly coherent between the toroidally separated systems ($\gamma> 0.8$) and that measurements are consistent with the expected $m=0,\ n=0$ structure. Observations show that the GAM in L-mode plasmas with $\sim 2.5-4.5$ MW auxiliary heating occurs as a radially coherent eigenmode, rather than as a continuum of frequencies as occurs in lower temperature discharges; this is consistent with theoretical expectations when finite ion Larmor radius effects are included. The intermittency of the GAM has been quantified, revealing that its autocorrelation time is fairly short, ranging from about 4 to about 15 GAM periods in cases examined, a difference that is accompanied by a modification to the probability distribution function of the $E \times B$ velocity at the GAM frequency. Conditionally-averaged bispectral analysis shows the strength of the nonlinear interaction of the GAM with broadband turbulence can vary with the magnitude of the GAM. Data also indicates a wave number dependence to the GAM's interaction with turbulence. Measurements also showed the existence of additional low frequency zonal flows (LFZF) at a few kilohertz in the core of DIII-D plasmas. These LFZF also correlated toroidally. The amplitude of both the GAM and LFZF were observed to depend on toroidal rotation, with both types of flows barely detectable in counter-injected plasmas. In a third set of results the development of diagnostic hardware, techniques used to acquire the above data, and related work is described. A novel multichannel Doppler backscattering system was developed. The five channel system operates in V-band (50-75 GHz) and has an array of 5 frequencies, separated by 350 MHz, which is tunable as a group. Laboratory tests of the hardware are presented. Doppler backscattering is a diagnostic technique for the radially localized measurement of intermediate-scale ($k_{\theta} \rho_s \sim 1$) density fluctuations and the laboratory frame propagation velocity of turbulent structures. Ray tracing, with experimental profiles and equilibria for inputs, is used to determine the scattering wave number and location. Full wave modeling, also with experimental inputs, is used for a synthetic Doppler backscattering diagnostic for nonlinear turbulence simulations. A number of non-ideal processes for DBS are also investigated; their impact on measurements in DIII-D are found, for the most part, to be small.

Understand and Predict the Power Threshold Leading to Reduced Turbulent Transport at the Edge of Tokamak Plasma

Understand and Predict the Power Threshold Leading to Reduced Turbulent Transport at the Edge of Tokamak Plasma PDF Author: Gregory De Dominici
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
A model based on a model which natively contained turbulence and turbulence driven flow. It has been improved to include the diamagnetic effects, the magnetic fluctuations, and in this work, we study the parametric dependencies of the observed L-H transition power threshold with respect to the ion mass. By including the diamagnetic effects in our model, we allow the competition between the drift waves and the interchange instabilities. This competition is here studied using fixed gradient simulation. We show in this work that the diamagnetic effects are stabilizing for a resistivity close to experimental conditions. Electromagnetic effects lead to more unstable modes at realistic resistivities. Moreover, a quasilinear estimation of the turbulent flux is able to qualitatively grasp the competition between the drift waves and the interchange and the behaviour of the nonlinear electrostatic turbulent flux with resistivity and plasma beta. Another parametric dependency of the turbulence is studied, by changing the mass of the isotope. This is known as the isotope effect. We show here that the turbulence is reduced when the ion mass is increased. Finally, the characteristic times of the turbulence are studied.Magnetic fluctuations have a dramatic effect on correlation times of the turbulence, by drastically reducing them. Accounting for these results, we present in this work the auto-generation of a transport barrier with electromagnetic simulations of edge turbulence, when the heat power is higher than a threshold, using flux-driven simulations. We have then changed the isotope, and correspondingly to experiments, the power threshold is lower for higher isotope mass.