Demonstration of Long-Term Storage Capability for Spent Nuclear Fuel in L Basin PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Demonstration of Long-Term Storage Capability for Spent Nuclear Fuel in L Basin PDF full book. Access full book title Demonstration of Long-Term Storage Capability for Spent Nuclear Fuel in L Basin by . Download full books in PDF and EPUB format.

Demonstration of Long-Term Storage Capability for Spent Nuclear Fuel in L Basin

Demonstration of Long-Term Storage Capability for Spent Nuclear Fuel in L Basin PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.

Demonstration of Long-Term Storage Capability for Spent Nuclear Fuel in L Basin

Demonstration of Long-Term Storage Capability for Spent Nuclear Fuel in L Basin PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.

Practices for Interim Storage of Research Reactor Spent Nuclear Fuel

Practices for Interim Storage of Research Reactor Spent Nuclear Fuel PDF Author: IAEA
Publisher: International Atomic Energy Agency
ISBN: 9201233221
Category : Technology & Engineering
Languages : en
Pages : 139

Book Description
This publication provides an introduction to the management of research reactor spent nuclear fuel (RRSNF). Five key areas are discussed: types of RRSNF, characterization data, wet storage considerations, dry storage considerations, and lessons learned and current practices. Information on internationally accepted standards as well as information on aspects such as drying treatment and surveillance programmes are presented, as well as suggestions for further optimization of effective and safe storage of RRSNF through the application of new approaches. The intended users of this publication include industry professionals at operating research reactors and at RRSNF storage facilities who need to identify the most suitable approach for interim storage of spent fuel.

Spent Nuclear Fuel

Spent Nuclear Fuel PDF Author:
Publisher:
ISBN:
Category : Spent reactor fuels
Languages : en
Pages : 28

Book Description


An International Spent Nuclear Fuel Storage Facility

An International Spent Nuclear Fuel Storage Facility PDF Author: Russian Academy of Sciences
Publisher: National Academies Press
ISBN: 0309181186
Category : Science
Languages : en
Pages : 302

Book Description
As part of a long-standing collaboration on nuclear nonproliferation, the National Academy of Sciences and the Russian Academy of Sciences held a joint workshop in Moscow in 2003 on the scientific aspects of an international radioactive disposal site in Russia. The passage of Russian laws permitting the importation and storage of high-level radioactive material (primarily spent nuclear fuel from reactors) has engendered interest from a number of foreign governments, including the U.S., in exploring the possibility of transferring material to Russia on a temporary or permanent basis. The workshop focused on the environmental aspects of the general location and characteristics of a possible storage site, transportation to and within the site, containers for transportation and storage, inventory and accountability, audits and inspections, and handling technologies.

Long-term Storage of Spent Nuclear Fuel

Long-term Storage of Spent Nuclear Fuel PDF Author: T. F. Kempe
Publisher:
ISBN:
Category : Nuclear reactors
Languages : en
Pages :

Book Description


Guidebook on Spent Fuel Storage

Guidebook on Spent Fuel Storage PDF Author:
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 224

Book Description
This guidebook is a revised version of Technical Reports Series No. 240, published in 1984. It provides a summary of the experience and information in many areas related to spent fuel storage. It will allow a better understanding of the many problems involved and permit countries that are planning for or operating nuclear power reactors to review the issues in a more informative manner. In view of the large quantity of spent fuel discharged from nuclear power plants, long term storage is currently the primary option for the management of spent fuel. The proven wet storage concept is expected to continue to be used in the future. The design and the technological, economic and material problems of safe spent fuel storage will remain a focus of attention, with particular emphasis on dry storage technology, rod consolidation and other advanced concepts.

Spent Nuclear Fuel Management

Spent Nuclear Fuel Management PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 408

Book Description


Department of Energy Study on Spent Nuclear Fuel Storage

Department of Energy Study on Spent Nuclear Fuel Storage PDF Author: United States. Department of Energy
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 52

Book Description


Spent Fuel Storage Requirements

Spent Fuel Storage Requirements PDF Author: United States. Department of Energy. Division of Spent Fuel Storage and Transfer
Publisher:
ISBN:
Category : Spent reactor fuels
Languages : en
Pages : 60

Book Description


Status of Spent Fuel Storage at Savannah River Site (October 2003).

Status of Spent Fuel Storage at Savannah River Site (October 2003). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The Savannah River Site continues to be the U.S. Department of Energy's primary receipt and storage location for aluminum based research reactor fuel. A number of initiatives have been implemented which enhance the site's storage capabilities while reducing the long term operating cost. The L-Basin facility improvements include projects that allow handling of the TN7/2 and LWT casks, improved basin chemistry, modernized the cask handling cranes, and increased basin capacity. In an effort to provide the most cost-effective long-term storage of material, the project to de-inventory the RBOF storage basin and consolidate spent nuclear fuel at L-Basin is nearly complete.