Delayed Gamma-Ray Assay for Nuclear Safeguards PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Delayed Gamma-Ray Assay for Nuclear Safeguards PDF full book. Access full book title Delayed Gamma-Ray Assay for Nuclear Safeguards by Vladimir Mozin. Download full books in PDF and EPUB format.

Delayed Gamma-Ray Assay for Nuclear Safeguards

Delayed Gamma-Ray Assay for Nuclear Safeguards PDF Author: Vladimir Mozin
Publisher:
ISBN:
Category :
Languages : en
Pages : 151

Book Description
This dissertation addresses the need for new non-destructive assay instruments capable of quantifying the fissile isotopic composition of spent nuclear fuel and of independently verifying the declared amounts of special nuclear materials at various stages of the nuclear fuel cycle. High-energy delayed gamma-ray spectroscopy can provide the ability to directly assay fissile and fertile isotopes in the highly radioactive environment of the spent fuel assemblies and to achieve the safeguards goal of measuring nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, and final disposal and repository sites. The delayed gamma-ray assay concept is investigated within this context with the objective of assessing whether the delayed gamma-ray assay instrument can provide sufficient sensitivity, isotope specificity and accuracy as required in nuclear material safeguards applications. Preliminary system design analysis indicates that the delayed gamma-ray response is affected by multiple parameters: type and intensity of the interrogating source, the configuration of the interrogation setup, the time pattern of the interrogation, and the resolution and count rate limit of the gamma-ray detection system. In order to handle the variety of factors associated with the delayed gamma-ray assay of spent nuclear fuel, a high-fidelity response modeling technique is introduced. The new algorithm seamlessly combines transport calculations with analytical decay/depletion, and discrete gamma-ray source reconstruction codes. Its performance was benchmarked in the dedicated experimental campaign involving accelerator-driven photo-neutron sources and samples containing fissile and fertile isotopes. Analytical estimations of the intensity of the delayed gamma-ray response and the passive background rate are utilized to develop a concept of the non-destructive instrument for the assay of spent nuclear fuel. The modeling technique is then applied to more detailed parametric study. These simulations included extensive spent fuel inventories, and accounted for realistic assay configurations and instrumentation. The results of this preliminary analysis indicate that the delayed gamma-ray assay of spent nuclear fuel assemblies can be performed with available neutron generator and detection technology. The sensitivity of the delayed gamma-ray spectra to the actinide content of the spent nuclear fuel is investigated. The simplest analysis of the delayed gamma-ray response is based on the analysis of integrated count rates and peak ratios. More powerful analytical and numerical methods are likely needed for determining the relative concentrations of fissile and fertile isotopes in samples with complex compositions.

Delayed Gamma-Ray Assay for Nuclear Safeguards

Delayed Gamma-Ray Assay for Nuclear Safeguards PDF Author: Vladimir Mozin
Publisher:
ISBN:
Category :
Languages : en
Pages : 151

Book Description
This dissertation addresses the need for new non-destructive assay instruments capable of quantifying the fissile isotopic composition of spent nuclear fuel and of independently verifying the declared amounts of special nuclear materials at various stages of the nuclear fuel cycle. High-energy delayed gamma-ray spectroscopy can provide the ability to directly assay fissile and fertile isotopes in the highly radioactive environment of the spent fuel assemblies and to achieve the safeguards goal of measuring nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, and final disposal and repository sites. The delayed gamma-ray assay concept is investigated within this context with the objective of assessing whether the delayed gamma-ray assay instrument can provide sufficient sensitivity, isotope specificity and accuracy as required in nuclear material safeguards applications. Preliminary system design analysis indicates that the delayed gamma-ray response is affected by multiple parameters: type and intensity of the interrogating source, the configuration of the interrogation setup, the time pattern of the interrogation, and the resolution and count rate limit of the gamma-ray detection system. In order to handle the variety of factors associated with the delayed gamma-ray assay of spent nuclear fuel, a high-fidelity response modeling technique is introduced. The new algorithm seamlessly combines transport calculations with analytical decay/depletion, and discrete gamma-ray source reconstruction codes. Its performance was benchmarked in the dedicated experimental campaign involving accelerator-driven photo-neutron sources and samples containing fissile and fertile isotopes. Analytical estimations of the intensity of the delayed gamma-ray response and the passive background rate are utilized to develop a concept of the non-destructive instrument for the assay of spent nuclear fuel. The modeling technique is then applied to more detailed parametric study. These simulations included extensive spent fuel inventories, and accounted for realistic assay configurations and instrumentation. The results of this preliminary analysis indicate that the delayed gamma-ray assay of spent nuclear fuel assemblies can be performed with available neutron generator and detection technology. The sensitivity of the delayed gamma-ray spectra to the actinide content of the spent nuclear fuel is investigated. The simplest analysis of the delayed gamma-ray response is based on the analysis of integrated count rates and peak ratios. More powerful analytical and numerical methods are likely needed for determining the relative concentrations of fissile and fertile isotopes in samples with complex compositions.

Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 108

Book Description
Modeling capabilities were added to an existing framework and codes were adapted as needed for analyzing experiments and assessing application-specific assay concepts including simulation of measurements over many short irradiation/spectroscopy cycles. The code package was benchmarked against the data collected at the IAC for small targets and assembly-scale data collected at LANL. A study of delayed gamma-ray spectroscopy for nuclear safeguards was performed for a variety of assemblies in the extensive NGSI spent fuel library. The modeling results indicate that delayed gamma-ray responses can be collected from spent fuel assemblies with statistical quality sufficient for analyzing their isotopic composition using a 1011 n/s neutron generator and COTS detector instrumentation.

Delayed Gamma-ray Spectroscopy for Safeguards Applications

Delayed Gamma-ray Spectroscopy for Safeguards Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Book Description
The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or in the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R & D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded SNM samples with portable neutron sources suitable for field applications.

Bibliography of Non-destructive Assay Methods for Nuclear Material Safeguards

Bibliography of Non-destructive Assay Methods for Nuclear Material Safeguards PDF Author: United States. Division of Nuclear Materials Security
Publisher:
ISBN:
Category : Nuclear fuels
Languages : en
Pages : 100

Book Description


Active Nondestructive Assay of Nuclear Materials

Active Nondestructive Assay of Nuclear Materials PDF Author: Tsahi Gozani
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 416

Book Description


Passive Nondestructive Assay of Nuclear Materials

Passive Nondestructive Assay of Nuclear Materials PDF Author: Doug Reilly
Publisher:
ISBN: 9780160327247
Category : Non-destructive testing
Languages : en
Pages : 700

Book Description


Active Interrogation in Nuclear Security

Active Interrogation in Nuclear Security PDF Author: Igor Jovanovic
Publisher: Springer
ISBN: 3319744674
Category : Technology & Engineering
Languages : en
Pages : 361

Book Description
This volume constitutes the state-of-the-art in active interrogation, widely recognized as indispensable methods for addressing current and future nuclear security needs. Written by a leading group of science and technology experts, this comprehensive reference presents technologies and systems in the context of the fundamental physics challenges and practical requirements. It compares the features, limitations, technologies, and impact of passive and active measurement techniques; describes radiation sources for active interrogation including electron and ion accelerators, intense lasers, and radioisotope-based sources; and it describes radiation detectors used for active interrogation. Entire chapters are devoted to data acquisition and processing systems, modeling and simulation, data interpretation and algorithms, and a survey of working active measurement systems. Active Interrogation in Nuclear Security is structured to appeal to a range of audiences, including graduate students, active researchers in the field, and policy analysts. The first book devoted entirely to active interrogation Presents a focused review of the relevant physics Surveys available technology Analyzes scientific and technology trends Provides historical and policy context Igor Jovanovic is a Professor of Nuclear Engineering and Radiological Sciences at the University of Michigan and has previously also taught at Penn State University and Purdue University. He received his Ph.D. from University of California, Berkeley and worked as physicist at Lawrence Livermore National Laboratory. Dr. Jovanovic has made numerous contributions to the science and technology of radiation detection, as well as the radiation sources for use in active interrogation in nuclear security. He has taught numerous undergraduate and graduate courses in areas that include radiation detection, nuclear physics, and nuclear security. At University of Michigan Dr. Jovanovic is the director of Neutron Science Laboratory and is also associated with the Center for Ultrafast Optical Science. Anna Erickson is an Assistant Professor in the Nuclear and Radiological Engineering Program of the G.W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Previously, she was a postdoctoral researcher in the Advanced Detectors Group at Lawrence Livermore National Laboratory. Dr. Erickson received her PhD from Massachusetts Institute of Technology with a focus on radiation detection for active interrogation applications. Her research interests focus on nuclear non-proliferation including antineutrino analysis and non-traditional detector design and characterization. She teaches courses in advanced experimental detection for reactor and nuclear nonproliferation applications, radiation dosimetry and fast reactor analysis.

Safeguards Techniques and Equipment

Safeguards Techniques and Equipment PDF Author: International Atomic Energy Agency
Publisher:
ISBN: 9789201189103
Category : Environmental sampling
Languages : en
Pages : 146

Book Description
The 1990s saw significant developments in the global non-proliferation landscape, resulting in a new period of safeguards development. The current publication, which is the second revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the safeguards techniques and equipment used for nuclear material accountancy, containment and surveillance measures, environmental sampling, and data security. New features include a section on new and novel technologies. As new verification measures continue to be developed, the material in this book will be reviewed periodically and updated versions issued.

Research and Development for Safeguards

Research and Development for Safeguards PDF Author: Guy M. Inman
Publisher:
ISBN:
Category : Nuclear materials management
Languages : en
Pages : 296

Book Description


Handbook of Nuclear Safeguards Measurement Methods

Handbook of Nuclear Safeguards Measurement Methods PDF Author: Donald R. Rogers
Publisher:
ISBN:
Category : Materials management
Languages : en
Pages : 760

Book Description