Author:
Publisher:
ISBN:
Category : Semiconductors
Languages : en
Pages : 648
Book Description
Defects in Semiconductors, ICDS-19
Defects in Semiconductors
Author:
Publisher: Academic Press
ISBN: 0128019409
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors
Publisher: Academic Press
ISBN: 0128019409
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors
Defects in Semiconductors, ICDS-19
Author: Gordon Davies
Publisher:
ISBN:
Category : Materials
Languages : en
Pages : 726
Book Description
Modern Technology depends upon silicon chips, and life as we know it would hardly be possible without semiconductor devices. Control over a given semiconductor's electronic properties is achieved via defect engineering, and the scientific and technical challenges in this field are manifold. The present three-volume set provides a complete update on recent developments in the general area of defects in semiconductors, and covers a wide range of subjects. It will be Invaluable to professionals working in the field of semiconductor research and to all of those who need to be kept up-to-date on the most recent findings in this area. Part 1: 1. Plenary Sessions. 2. Germanium. 3. Alloys of Si, Ge and C. 4. Silicon: Hydrogen. 5. Silicon: Oxygen. 6. Silicon: Metals. 7. Silicon: Radiation Damage. Part 2: 8. Silicon Carbide. 9. Diamond. 10. Indium Phosphide. 11. Gallium Arsenide: Impurities. 12. Antisite Defects and EL2. 13. Gallium Arsenide: Radiation Damage. 14. Gallium Phosphide. 15. Gallium Nitride. 16. Other III-V Compounds. Part 3: 17. Aluminium Gallium Arsenide. 18. II-VI Compound Semiconductors. 19. Cadmium Fluoride. 20. Chalcopyrites and Other Host Lattices. 21. Erbium. 22. Low Dimensional Structures. 23. Surfaces and Interfaces. 24. Diffusion.
Publisher:
ISBN:
Category : Materials
Languages : en
Pages : 726
Book Description
Modern Technology depends upon silicon chips, and life as we know it would hardly be possible without semiconductor devices. Control over a given semiconductor's electronic properties is achieved via defect engineering, and the scientific and technical challenges in this field are manifold. The present three-volume set provides a complete update on recent developments in the general area of defects in semiconductors, and covers a wide range of subjects. It will be Invaluable to professionals working in the field of semiconductor research and to all of those who need to be kept up-to-date on the most recent findings in this area. Part 1: 1. Plenary Sessions. 2. Germanium. 3. Alloys of Si, Ge and C. 4. Silicon: Hydrogen. 5. Silicon: Oxygen. 6. Silicon: Metals. 7. Silicon: Radiation Damage. Part 2: 8. Silicon Carbide. 9. Diamond. 10. Indium Phosphide. 11. Gallium Arsenide: Impurities. 12. Antisite Defects and EL2. 13. Gallium Arsenide: Radiation Damage. 14. Gallium Phosphide. 15. Gallium Nitride. 16. Other III-V Compounds. Part 3: 17. Aluminium Gallium Arsenide. 18. II-VI Compound Semiconductors. 19. Cadmium Fluoride. 20. Chalcopyrites and Other Host Lattices. 21. Erbium. 22. Low Dimensional Structures. 23. Surfaces and Interfaces. 24. Diffusion.
Extended Defects in Semiconductors
Author: D. B. Holt
Publisher: Cambridge University Press
ISBN: 9781107424142
Category : Science
Languages : en
Pages : 0
Book Description
Covering topics that are especially important in electronic device development, this book surveys the properties, effects, roles and characterization of structurally extended defects in semiconductors. The basic properties of extended defects are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.
Publisher: Cambridge University Press
ISBN: 9781107424142
Category : Science
Languages : en
Pages : 0
Book Description
Covering topics that are especially important in electronic device development, this book surveys the properties, effects, roles and characterization of structurally extended defects in semiconductors. The basic properties of extended defects are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.
Dopants and Defects in Semiconductors
Author: Matthew D. McCluskey
Publisher: CRC Press
ISBN: 1351977989
Category : Science
Languages : en
Pages : 373
Book Description
Praise for the First Edition "The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field" ―Materials Today "... well written, with clear, lucid explanations ..." ―Chemistry World This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors. Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley. Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.
Publisher: CRC Press
ISBN: 1351977989
Category : Science
Languages : en
Pages : 373
Book Description
Praise for the First Edition "The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field" ―Materials Today "... well written, with clear, lucid explanations ..." ―Chemistry World This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors. Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley. Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.
Theory of Defects in Solids
Author: A. M. Stoneham
Publisher: Oxford University Press
ISBN: 9780198507802
Category : Science
Languages : en
Pages : 982
Book Description
This book surveys the theory of defects in solids, concentrating on the electronic structure of point defects in insulators and semiconductors. The relations between different approaches are described, and the predictions of the theory compared critically with experiment. The physical assumptions and approximations are emphasized. The book begins with the perfect solid, then reviews the main methods of calculating defect energy levels and wave functions. The calculation and observable defect properties is discussed, and finally, the theory is applied to a range of defects that are very different in nature. This book is intended for research workers and graduate students interested in solid-state physics. From reviews of the hardback: 'It is unique and of great value to all interested in the basic aspects of defects in solids.' Physics Today 'This is a particularly worthy book, one which has long been needed by the theoretician and experimentalist alike.' Nature
Publisher: Oxford University Press
ISBN: 9780198507802
Category : Science
Languages : en
Pages : 982
Book Description
This book surveys the theory of defects in solids, concentrating on the electronic structure of point defects in insulators and semiconductors. The relations between different approaches are described, and the predictions of the theory compared critically with experiment. The physical assumptions and approximations are emphasized. The book begins with the perfect solid, then reviews the main methods of calculating defect energy levels and wave functions. The calculation and observable defect properties is discussed, and finally, the theory is applied to a range of defects that are very different in nature. This book is intended for research workers and graduate students interested in solid-state physics. From reviews of the hardback: 'It is unique and of great value to all interested in the basic aspects of defects in solids.' Physics Today 'This is a particularly worthy book, one which has long been needed by the theoretician and experimentalist alike.' Nature
Characterisation and Control of Defects in Semiconductors
Author: Filip Tuomisto
Publisher: Institution of Engineering and Technology
ISBN: 1785616552
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
Understanding the formation and introduction mechanisms of defects in semiconductors is essential to understanding their properties. Although many defect-related problems have been identified and solved over the past 60 years of semiconductor research, the quest for faster, cheaper, lower power, and new kinds of electronics generates an ongoing need for new materials and properties, and so creates new defect-related challenges.
Publisher: Institution of Engineering and Technology
ISBN: 1785616552
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
Understanding the formation and introduction mechanisms of defects in semiconductors is essential to understanding their properties. Although many defect-related problems have been identified and solved over the past 60 years of semiconductor research, the quest for faster, cheaper, lower power, and new kinds of electronics generates an ongoing need for new materials and properties, and so creates new defect-related challenges.
D(X) Centres and other Metastable Defects in Semiconductors, Proceedings of the INT Symposium, Mauterndorf, Austria, 18-22 February 1991
Author: W. Jantsch
Publisher: CRC Press
ISBN: 1000112233
Category : Science
Languages : en
Pages : 164
Book Description
Since the first reports on metastable defects in III-V and II-VI compound semiconductors appeared in the late 1960s, the number of reports on defects with metastable states has been growing at an ever increasing rate. D(X)-center and other metastability defects cause many technical problems that are exacerbated by the uncertainty and controversy surrounding the mechanisms that cause them. A lively mix of theoretical and experimental discussions, D(X)-Centres and other Metastable Defects in Semiconductors presents a timely investigation of these systems. The book discusses topics such as, the validity of negative or positive U models, as well as alternative views that challenge existing ideas. The richness and precision of experimental data now emerging in the field is chronicled as are new investigative techniques. Based on an INT symposium, this book provides a successful forum where an extraordinary variety of ideas, including new perspectives, are examined critically.
Publisher: CRC Press
ISBN: 1000112233
Category : Science
Languages : en
Pages : 164
Book Description
Since the first reports on metastable defects in III-V and II-VI compound semiconductors appeared in the late 1960s, the number of reports on defects with metastable states has been growing at an ever increasing rate. D(X)-center and other metastability defects cause many technical problems that are exacerbated by the uncertainty and controversy surrounding the mechanisms that cause them. A lively mix of theoretical and experimental discussions, D(X)-Centres and other Metastable Defects in Semiconductors presents a timely investigation of these systems. The book discusses topics such as, the validity of negative or positive U models, as well as alternative views that challenge existing ideas. The richness and precision of experimental data now emerging in the field is chronicled as are new investigative techniques. Based on an INT symposium, this book provides a successful forum where an extraordinary variety of ideas, including new perspectives, are examined critically.
Point Defects in Semiconductors and Insulators
Author: Johann-Martin Spaeth
Publisher: Springer Science & Business Media
ISBN: 9783540426950
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.
Publisher: Springer Science & Business Media
ISBN: 9783540426950
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1462
Book Description
NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1462
Book Description
NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.