Author: Karthik, S.
Publisher: IGI Global
ISBN: 1522530169
Category : Computers
Languages : en
Pages : 287
Book Description
The expansion of digital data has transformed various sectors of business such as healthcare, industrial manufacturing, and transportation. A new way of solving business problems has emerged through the use of machine learning techniques in conjunction with big data analytics. Deep Learning Innovations and Their Convergence With Big Data is a pivotal reference for the latest scholarly research on upcoming trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. Featuring extensive coverage on a broad range of topics and perspectives such as deep neural network, domain adaptation modeling, and threat detection, this book is ideally designed for researchers, professionals, and students seeking current research on the latest trends in the field of deep learning techniques in big data analytics.
Deep Learning Innovations and Their Convergence With Big Data
Deep Learning: Convergence to Big Data Analytics
Author: Murad Khan
Publisher: Springer
ISBN: 9811334595
Category : Computers
Languages : en
Pages : 93
Book Description
This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.
Publisher: Springer
ISBN: 9811334595
Category : Computers
Languages : en
Pages : 93
Book Description
This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.
Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing
Author: Velayutham, Sathiyamoorthi
Publisher: IGI Global
ISBN: 1799831132
Category : Computers
Languages : en
Pages : 350
Book Description
In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.
Publisher: IGI Global
ISBN: 1799831132
Category : Computers
Languages : en
Pages : 350
Book Description
In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.
Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799804151
Category : Computers
Languages : en
Pages : 1707
Book Description
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.
Publisher: IGI Global
ISBN: 1799804151
Category : Computers
Languages : en
Pages : 1707
Book Description
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.
Handbook of Research on Big Data Storage and Visualization Techniques
Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1522531432
Category : Computers
Languages : en
Pages : 1078
Book Description
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.
Publisher: IGI Global
ISBN: 1522531432
Category : Computers
Languages : en
Pages : 1078
Book Description
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.
Predictive Analysis on Large Data for Actionable Knowledge: Emerging Research and Opportunities
Author: Usman, Muhammad
Publisher: IGI Global
ISBN: 1522550305
Category : Computers
Languages : en
Pages : 187
Book Description
Data analysis forms the basis of many modes of research ranging from scientific discoveries to governmental findings. With the advent of machine intelligence and neural networks, extracting and modeling, approaching data has been unimpeachably altered. These changes, seemingly small, affect the way societies organize themselves, deliver services, or interact with each other. Predictive Analysis on Large Data for Actionable Knowledge: Emerging Research and Opportunities provides emerging information on extraction and prediction patterns in data mining along with knowledge discovery. While highlighting the current issues in data extraction, readers will learn new methodologies comprising of different algorithms that automate the multidimensional schema that remove the manual processes. This book is a vital resource for researchers, academics, and those seeking new information on data mining techniques and trends.
Publisher: IGI Global
ISBN: 1522550305
Category : Computers
Languages : en
Pages : 187
Book Description
Data analysis forms the basis of many modes of research ranging from scientific discoveries to governmental findings. With the advent of machine intelligence and neural networks, extracting and modeling, approaching data has been unimpeachably altered. These changes, seemingly small, affect the way societies organize themselves, deliver services, or interact with each other. Predictive Analysis on Large Data for Actionable Knowledge: Emerging Research and Opportunities provides emerging information on extraction and prediction patterns in data mining along with knowledge discovery. While highlighting the current issues in data extraction, readers will learn new methodologies comprising of different algorithms that automate the multidimensional schema that remove the manual processes. This book is a vital resource for researchers, academics, and those seeking new information on data mining techniques and trends.
Data Science with Semantic Technologies
Author: Archana Patel
Publisher: CRC Press
ISBN: 1000881237
Category : Computers
Languages : en
Pages : 293
Book Description
As data is an important asset for any organization, it is essential to apply semantic technologies in data science to fulfill the need of any organization. This first volume of a two-volume handbook set provides a roadmap for new trends and future developments of data science with semantic technologies. Data Science with Semantic Technologies: New Trends and Future Developments highlights how data science enables the user to create intelligence through these technologies. In addition, this book offers the answers to various questions such as: Can semantic technologies facilitate data science? Which type of data science problems can be tackled by semantic technologies? How can data scientists benefit from these technologies? What is the role of semantic technologies in data science? What is the current progress and future of data science with semantic technologies? Which types of problems require the immediate attention of the researchers? What should be the vision 2030 for data science? This volume can serve as an important guide toward applications of data science with semantic technologies for the upcoming generation and, thus, it is a unique resource for scholars, researchers, professionals, and practitioners in this field.
Publisher: CRC Press
ISBN: 1000881237
Category : Computers
Languages : en
Pages : 293
Book Description
As data is an important asset for any organization, it is essential to apply semantic technologies in data science to fulfill the need of any organization. This first volume of a two-volume handbook set provides a roadmap for new trends and future developments of data science with semantic technologies. Data Science with Semantic Technologies: New Trends and Future Developments highlights how data science enables the user to create intelligence through these technologies. In addition, this book offers the answers to various questions such as: Can semantic technologies facilitate data science? Which type of data science problems can be tackled by semantic technologies? How can data scientists benefit from these technologies? What is the role of semantic technologies in data science? What is the current progress and future of data science with semantic technologies? Which types of problems require the immediate attention of the researchers? What should be the vision 2030 for data science? This volume can serve as an important guide toward applications of data science with semantic technologies for the upcoming generation and, thus, it is a unique resource for scholars, researchers, professionals, and practitioners in this field.
Attractors and Higher Dimensions in Population and Molecular Biology: Emerging Research and Opportunities
Author: Zhizhin, Gennadiy Vladimirovich
Publisher: IGI Global
ISBN: 1522596534
Category : Science
Languages : en
Pages : 245
Book Description
In studying biology, one of the more difficult factors to predict is how parents attributes will affect their children and how those children will affect their own children. Organizing and calculating those vast statistics can become extremely tedious without the proper mathematical and reproductive knowledge. Attractors and Higher Dimensions in Population and Molecular Biology: Emerging Research and Opportunities is a collection of innovative research on the methods and applications of population logistics. While highlighting topics including gene analysis, crossbreeding, and reproduction, this book is ideally designed for academics, researchers, biologists, and mathematicians seeking current research on modeling the reproduction process of a biological population.
Publisher: IGI Global
ISBN: 1522596534
Category : Science
Languages : en
Pages : 245
Book Description
In studying biology, one of the more difficult factors to predict is how parents attributes will affect their children and how those children will affect their own children. Organizing and calculating those vast statistics can become extremely tedious without the proper mathematical and reproductive knowledge. Attractors and Higher Dimensions in Population and Molecular Biology: Emerging Research and Opportunities is a collection of innovative research on the methods and applications of population logistics. While highlighting topics including gene analysis, crossbreeding, and reproduction, this book is ideally designed for academics, researchers, biologists, and mathematicians seeking current research on modeling the reproduction process of a biological population.
Innovations in Computational Intelligence, Big Data Analytics and Internet of Things
Author: Sam Goundar
Publisher: IAP
ISBN:
Category : Computers
Languages : en
Pages : 385
Book Description
As sensors spread across almost every industry, the internet of things is going to trigger a massive influx of big data. We delve into where IoT will have the biggest impact and what it means for the future of big data analytics. Internet of Things is changing the face of different sectors such as manufacturing, health-care, business, education etc. by completely redefining the way people, devices, and apps connect and interact with each other in the eco system. From personal fitness and wellness sensors, implantable devices to surgical robots – IoT is bringing in new tools and efficiencies in the ecosystem resulting in more integrated healthcare. Application of computational intelligence techniques is today considered as a key success factor to solve the growing scale and complexity of problems in the field of health care systems, agriculture, e-commerce etc. The convergence of Computational intelligence, Big Data and IoT provides new opportunities and revolutionize business in huge way. This book will support industry and governmental agencies to facilitate and make sense of myriad connected devices in coming decade. This book offers the recent advancements in Computational Intelligence, IoT and Big Data Analytics. • Development of models and algorithms for employing IoT based facilities in healthcare, industry, agriculture, e- commerce, manufacturing, business etc. • Methods for collection, management retrieval and processing of Big Data in various domains. • Provides taxonomy of challenges, issues and research directions in applications of computational intelligence techniques in different domains
Publisher: IAP
ISBN:
Category : Computers
Languages : en
Pages : 385
Book Description
As sensors spread across almost every industry, the internet of things is going to trigger a massive influx of big data. We delve into where IoT will have the biggest impact and what it means for the future of big data analytics. Internet of Things is changing the face of different sectors such as manufacturing, health-care, business, education etc. by completely redefining the way people, devices, and apps connect and interact with each other in the eco system. From personal fitness and wellness sensors, implantable devices to surgical robots – IoT is bringing in new tools and efficiencies in the ecosystem resulting in more integrated healthcare. Application of computational intelligence techniques is today considered as a key success factor to solve the growing scale and complexity of problems in the field of health care systems, agriculture, e-commerce etc. The convergence of Computational intelligence, Big Data and IoT provides new opportunities and revolutionize business in huge way. This book will support industry and governmental agencies to facilitate and make sense of myriad connected devices in coming decade. This book offers the recent advancements in Computational Intelligence, IoT and Big Data Analytics. • Development of models and algorithms for employing IoT based facilities in healthcare, industry, agriculture, e- commerce, manufacturing, business etc. • Methods for collection, management retrieval and processing of Big Data in various domains. • Provides taxonomy of challenges, issues and research directions in applications of computational intelligence techniques in different domains
Visibilities and Invisibilities in Smart Cities: Emerging Research and Opportunities
Author: McKenna, H. Patricia
Publisher: IGI Global
ISBN: 179983851X
Category : Political Science
Languages : en
Pages : 289
Book Description
Throughout history, humanity has sought the betterment of its communities. In the 21st century, humanity has technology on its side in the process of improving its cities. Smart cities make their improvements by gathering real-world data in real time. Still, there are many complexities that many do not catch—they are invisible. It is important to understand how people make sense at the urban level and in extra-urban spaces of the combined complexities of invisibilities and visibilities in their environments, interactions, and infrastructures enabled through their own enhanced awareness together with aware technologies that are often embedded, pervasive, and ambient. This book probes the visible and invisible dimensions of emerging understandings of smart cities and regions in the context of more aware people interacting with each other and through more aware and pervasive technologies. Visibilities and Invisibilities in Smart Cities: Emerging Research and Opportunities contributes to the research literature for urban theoretical spaces, methodologies, and applications for smart and responsive cities; the evolving of urban theory and methods for 21st century cities and urbanities; and the formulation of a conceptual framework for associated methodologies and theoretical spaces. This work explores the relationships between variables using a case study approach combined with an explanatory correlational design. It is based on an urban research study conducted from mid-2015 to mid-2020 that spanned multiple countries across three continents. The book is split into four sections: introduction to the concepts of visible and invisible, frameworks for understanding the interplay of the two concepts, associated and evolving theory and methods, and extending current research as opportunities in smart city environments and regions. Covering topics including human geography, smart cities, and urban planning, this book is essential for urban planners, designers, city officials, community agencies, business managers and owners, academicians, researchers, and students, including those who work across multiple domains such as architecture, environmental design, human-computer interaction, human geography, information technology, sociology, and affective computing.
Publisher: IGI Global
ISBN: 179983851X
Category : Political Science
Languages : en
Pages : 289
Book Description
Throughout history, humanity has sought the betterment of its communities. In the 21st century, humanity has technology on its side in the process of improving its cities. Smart cities make their improvements by gathering real-world data in real time. Still, there are many complexities that many do not catch—they are invisible. It is important to understand how people make sense at the urban level and in extra-urban spaces of the combined complexities of invisibilities and visibilities in their environments, interactions, and infrastructures enabled through their own enhanced awareness together with aware technologies that are often embedded, pervasive, and ambient. This book probes the visible and invisible dimensions of emerging understandings of smart cities and regions in the context of more aware people interacting with each other and through more aware and pervasive technologies. Visibilities and Invisibilities in Smart Cities: Emerging Research and Opportunities contributes to the research literature for urban theoretical spaces, methodologies, and applications for smart and responsive cities; the evolving of urban theory and methods for 21st century cities and urbanities; and the formulation of a conceptual framework for associated methodologies and theoretical spaces. This work explores the relationships between variables using a case study approach combined with an explanatory correlational design. It is based on an urban research study conducted from mid-2015 to mid-2020 that spanned multiple countries across three continents. The book is split into four sections: introduction to the concepts of visible and invisible, frameworks for understanding the interplay of the two concepts, associated and evolving theory and methods, and extending current research as opportunities in smart city environments and regions. Covering topics including human geography, smart cities, and urban planning, this book is essential for urban planners, designers, city officials, community agencies, business managers and owners, academicians, researchers, and students, including those who work across multiple domains such as architecture, environmental design, human-computer interaction, human geography, information technology, sociology, and affective computing.