Author: Avik Santra
Publisher: Artech House
ISBN: 1630817473
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them. Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.
Deep Learning Applications of Short-Range Radars
Author: Avik Santra
Publisher: Artech House
ISBN: 1630817473
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them. Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.
Publisher: Artech House
ISBN: 1630817473
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them. Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.
Deep Neural Network Design for Radar Applications
Author: Sevgi Zubeyde Gurbuz
Publisher: SciTech Publishing
ISBN: 1785618520
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.
Publisher: SciTech Publishing
ISBN: 1785618520
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.
Methods and Techniques in Deep Learning
Author: Avik Santra
Publisher: John Wiley & Sons
ISBN: 1119910676
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
Methods and Techniques in Deep Learning Introduces multiple state-of-the-art deep learning architectures for mmWave radar in a variety of advanced applications Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions provides a timely and authoritative overview of the use of artificial intelligence (AI)-based processing for various mmWave radar applications. Focusing on practical deep learning techniques, this comprehensive volume explains the fundamentals of deep learning, reviews cutting-edge deep metric learning techniques, describes different typologies of reinforcement learning (RL) algorithms, highlights how domain adaptation (DA) can be used for improving the performance of machine learning (ML) algorithms, and more. Throughout the book, readers are exposed to product-ready deep learning solutions while learning skills that are relevant for building any industrial-grade, sensor-based deep learning solution. A team of authors with more than 70 filed patents and 100 published papers on AI and sensor processing illustrates how deep learning is enabling a range of advanced industrial, consumer, and automotive applications of mmWave radars. In-depth chapters cover topics including multi-modal deep learning approaches, the elemental blocks required to formulate Bayesian deep learning, how domain adaptation (DA) can be used for improving the performance of machine learning algorithms, and geometric deep learning are used for processing point clouds. In addition, the book: Discusses various advanced applications and how their respective challenges have been addressed using different deep learning architectures and algorithms Describes deep learning in the context of computer vision, natural language processing, sensor processing, and mmWave radar sensors Demonstrates how deep parametric learning reduces the number of trainable parameters and improves the data flow Presents several human-machine interface (HMI) applications such as gesture recognition, human activity classification, human localization and tracking, in-cabin automotive occupancy sensing Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions is an invaluable resource for industry professionals, researchers, and graduate students working in systems engineering, signal processing, sensors, data science, and AI.
Publisher: John Wiley & Sons
ISBN: 1119910676
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
Methods and Techniques in Deep Learning Introduces multiple state-of-the-art deep learning architectures for mmWave radar in a variety of advanced applications Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions provides a timely and authoritative overview of the use of artificial intelligence (AI)-based processing for various mmWave radar applications. Focusing on practical deep learning techniques, this comprehensive volume explains the fundamentals of deep learning, reviews cutting-edge deep metric learning techniques, describes different typologies of reinforcement learning (RL) algorithms, highlights how domain adaptation (DA) can be used for improving the performance of machine learning (ML) algorithms, and more. Throughout the book, readers are exposed to product-ready deep learning solutions while learning skills that are relevant for building any industrial-grade, sensor-based deep learning solution. A team of authors with more than 70 filed patents and 100 published papers on AI and sensor processing illustrates how deep learning is enabling a range of advanced industrial, consumer, and automotive applications of mmWave radars. In-depth chapters cover topics including multi-modal deep learning approaches, the elemental blocks required to formulate Bayesian deep learning, how domain adaptation (DA) can be used for improving the performance of machine learning algorithms, and geometric deep learning are used for processing point clouds. In addition, the book: Discusses various advanced applications and how their respective challenges have been addressed using different deep learning architectures and algorithms Describes deep learning in the context of computer vision, natural language processing, sensor processing, and mmWave radar sensors Demonstrates how deep parametric learning reduces the number of trainable parameters and improves the data flow Presents several human-machine interface (HMI) applications such as gesture recognition, human activity classification, human localization and tracking, in-cabin automotive occupancy sensing Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions is an invaluable resource for industry professionals, researchers, and graduate students working in systems engineering, signal processing, sensors, data science, and AI.
Optimization of Spiking Neural Networks for Radar Applications
Author: Muhammad Arsalan
Publisher: Springer Nature
ISBN: 3658453184
Category :
Languages : en
Pages : 253
Book Description
Publisher: Springer Nature
ISBN: 3658453184
Category :
Languages : en
Pages : 253
Book Description
Engineering UAS Applications: Sensor Fusion, Machine Vision and Mission Management
Author: Jesús Garcia
Publisher: Artech House
ISBN: 1630819840
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical functions such as navigation, obstacle avoidance and perception, and the capacity to improve performance in real and simulated scenarios. It provides the practical knowledge to install, analyze and evaluate UAS solutions working in real systems; illustrates how to use and configure complete platforms and software tools; and reviews the main enabling technologies applied to develop UAS, possibilities and evaluation methodology. You will get the tools you need to evaluate navigation and obstacle avoidance functions, object detection, and planning and landing alternatives in simulated conditions. The book also provides helpful guidance on the integration of additional sensors (video, weather, meteorological) and communication networks to build IoT solutions. This is an important book for practitioners and researchers interested in integrating advanced techniques in the fields of AI, sensor fusion and mission management, and anyone interest in applying and testing advanced algorithms in UAS platforms.
Publisher: Artech House
ISBN: 1630819840
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
Unmanned aerial systems (UAS) have evolved rapidly in recent years thanks to advances in microelectromechanical components, navigation, perception, and artificial intelligence, allowing for a fast development of autonomy. This book presents general approaches to develop, test, and evaluate critical functions such as navigation, obstacle avoidance and perception, and the capacity to improve performance in real and simulated scenarios. It provides the practical knowledge to install, analyze and evaluate UAS solutions working in real systems; illustrates how to use and configure complete platforms and software tools; and reviews the main enabling technologies applied to develop UAS, possibilities and evaluation methodology. You will get the tools you need to evaluate navigation and obstacle avoidance functions, object detection, and planning and landing alternatives in simulated conditions. The book also provides helpful guidance on the integration of additional sensors (video, weather, meteorological) and communication networks to build IoT solutions. This is an important book for practitioners and researchers interested in integrating advanced techniques in the fields of AI, sensor fusion and mission management, and anyone interest in applying and testing advanced algorithms in UAS platforms.
Adaptive Radar Detection: Model-Based, Data-Driven and Hybrid Approaches
Author: Angelo Coluccia
Publisher: Artech House
ISBN: 1630819018
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
This book shows you how to adopt data-driven techniques for the problem of radar detection, both per se and in combination with model-based approaches. In particular, the focus is on space-time adaptive target detection against a background of interference consisting of clutter, possible jammers, and noise. It is a handy, concise reference for many classic (model-based) adaptive radar detection schemes as well as the most popular machine learning techniques (including deep neural networks) and helps you identify suitable data-driven approaches for radar detection and the main related issues. You’ll learn how data-driven tools relate to, and can be coupled or hybridized with, traditional adaptive detection statistics; understand fundamental concepts, schemes, and algorithms from statistical learning, classification, and neural networks domains. The book also walks you through how these concepts and schemes have been adapted for the problem of radar detection in the literature and provides you with a methodological guide for the design, illustrating different possible strategies. You’ll be equipped to develop a unified view, under which you can exploit the new possibilities of the data-driven approach even using simulated data. This book is an excellent resource for Radar professionals and industrial researchers, postgraduate students in electrical engineering and the academic community.
Publisher: Artech House
ISBN: 1630819018
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
This book shows you how to adopt data-driven techniques for the problem of radar detection, both per se and in combination with model-based approaches. In particular, the focus is on space-time adaptive target detection against a background of interference consisting of clutter, possible jammers, and noise. It is a handy, concise reference for many classic (model-based) adaptive radar detection schemes as well as the most popular machine learning techniques (including deep neural networks) and helps you identify suitable data-driven approaches for radar detection and the main related issues. You’ll learn how data-driven tools relate to, and can be coupled or hybridized with, traditional adaptive detection statistics; understand fundamental concepts, schemes, and algorithms from statistical learning, classification, and neural networks domains. The book also walks you through how these concepts and schemes have been adapted for the problem of radar detection in the literature and provides you with a methodological guide for the design, illustrating different possible strategies. You’ll be equipped to develop a unified view, under which you can exploit the new possibilities of the data-driven approach even using simulated data. This book is an excellent resource for Radar professionals and industrial researchers, postgraduate students in electrical engineering and the academic community.
Principles of Modern Radar Missile Seekers
Author: Evgeny Markin
Publisher: Artech House
ISBN: 1630817783
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book gives you an in-depth look into the critical function of interference shielding for onboard radar of anti-aircraft missile systems. Intended for radar engineers and technicians specializing in anti-aircraft defense, the book reviews today’s military and geo-political threats, helps you understand the functional needs of the various radar and anti-missile systems to meet those threats, and synthesizes considerations for devising practical and effective protection against interferences that affect the homing heads of anti-aircraft guided missiles. Three problematic interferences are presented and discussed in detail: polarization interference; interference to the sidelobe of onboard antennas; and interference from two points in space, including interference reflected from the earth (water) surface. The book covers the basic principles of radiolocation, including monopulse radars, and gives insight into the fundamental functional units of anti-aircraft missiles and surface-to-air missile systems. The book presents guidance methods, systems of direction finding, problems on firing over the horizon, and questions of accuracy and resolution – all important for better addressing solutions of interference shielding. You will learn how to estimate the stability of target auto-tracking under conditions of cited interferences, and better assess existing limitations on firing over the horizon by a long-range antiaircraft system, as well as hypersonic targets and satellites. This is a unique and valuable resource for engineers and technicians who are involved in the design and development of anti-aircraft guided missile systems, with special emphasis on interference immunity and protection. It can also be used as a textbook in advanced radar technology coursework and seminars.
Publisher: Artech House
ISBN: 1630817783
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book gives you an in-depth look into the critical function of interference shielding for onboard radar of anti-aircraft missile systems. Intended for radar engineers and technicians specializing in anti-aircraft defense, the book reviews today’s military and geo-political threats, helps you understand the functional needs of the various radar and anti-missile systems to meet those threats, and synthesizes considerations for devising practical and effective protection against interferences that affect the homing heads of anti-aircraft guided missiles. Three problematic interferences are presented and discussed in detail: polarization interference; interference to the sidelobe of onboard antennas; and interference from two points in space, including interference reflected from the earth (water) surface. The book covers the basic principles of radiolocation, including monopulse radars, and gives insight into the fundamental functional units of anti-aircraft missiles and surface-to-air missile systems. The book presents guidance methods, systems of direction finding, problems on firing over the horizon, and questions of accuracy and resolution – all important for better addressing solutions of interference shielding. You will learn how to estimate the stability of target auto-tracking under conditions of cited interferences, and better assess existing limitations on firing over the horizon by a long-range antiaircraft system, as well as hypersonic targets and satellites. This is a unique and valuable resource for engineers and technicians who are involved in the design and development of anti-aircraft guided missile systems, with special emphasis on interference immunity and protection. It can also be used as a textbook in advanced radar technology coursework and seminars.
Millimeter Wave Radar
Author: Stephen L. Johnston
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Small and Short-Range Radar Systems
Author: Gregory L. Charvat
Publisher: CRC Press
ISBN: 1439866007
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBSAuthor Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology i
Publisher: CRC Press
ISBN: 1439866007
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBSAuthor Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology i
Radar and EW Modeling in MATLAB and Simulink
Author: Carlos A. Dávila
Publisher: Artech House
ISBN: 1630819077
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
This resource covers basic concepts and modeling examples for the three “pillars” of EW: Electronic Attack (EA) systems, Electronic Protection (EP) techniques, and Electronic Support (ES). It develops techniques for the modeling and simulation (M&S) of modern radar and electronic warfare (EW) systems and reviews radar principles, including the radar equation. M&S techniques are introduced, and example models developed in MATLAB and Simulink are presented and discussed in detail. These individual models are combined to create a full end-to-end engineering engagement simulation between a pulse-Doppler radar and a target. The radar-target engagement model is extended to include jamming models and is used to illustrate the interaction between radar and jamming signals and the impact on radar detection and tracking. In addition, several classic EA techniques are introduced and modeled, and the effects on radar performance are explored. This book is a valuable resource for engineers, scientists, and managers who are involved in the design, development, or testing of radar and EW systems. It provides a comprehensive overview of the M&S techniques that are used in these systems, and the book's many examples and case studies provide a solid foundation for understanding how these techniques can be applied in practice.
Publisher: Artech House
ISBN: 1630819077
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
This resource covers basic concepts and modeling examples for the three “pillars” of EW: Electronic Attack (EA) systems, Electronic Protection (EP) techniques, and Electronic Support (ES). It develops techniques for the modeling and simulation (M&S) of modern radar and electronic warfare (EW) systems and reviews radar principles, including the radar equation. M&S techniques are introduced, and example models developed in MATLAB and Simulink are presented and discussed in detail. These individual models are combined to create a full end-to-end engineering engagement simulation between a pulse-Doppler radar and a target. The radar-target engagement model is extended to include jamming models and is used to illustrate the interaction between radar and jamming signals and the impact on radar detection and tracking. In addition, several classic EA techniques are introduced and modeled, and the effects on radar performance are explored. This book is a valuable resource for engineers, scientists, and managers who are involved in the design, development, or testing of radar and EW systems. It provides a comprehensive overview of the M&S techniques that are used in these systems, and the book's many examples and case studies provide a solid foundation for understanding how these techniques can be applied in practice.