Deep Learning Algorithms for Computational Mechanics on Irregular Geometries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Deep Learning Algorithms for Computational Mechanics on Irregular Geometries PDF full book. Access full book title Deep Learning Algorithms for Computational Mechanics on Irregular Geometries by Ali Kashefi. Download full books in PDF and EPUB format.

Deep Learning Algorithms for Computational Mechanics on Irregular Geometries

Deep Learning Algorithms for Computational Mechanics on Irregular Geometries PDF Author: Ali Kashefi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The current dissertation proposes novel fully supervised and weakly supervised learning frameworks in the area of computational physics. Concerning the supervised deep learning framework, we present a novel deep learning framework for flow field predictions in irregular domains when the solution is a function of the geometry of either the domain or objects inside the domain. Grid vertices in a computational fluid dynamics (CFD) domain are viewed as point clouds and used as inputs to a neural network based on the PointNet architecture, which learns an end-to-end mapping between spatial positions and CFD quantities. Using our approach, (i) the network inherits desirable features of unstructured meshes (e.g., fine and coarse point spacing near the object surface and in the far field, respectively), which minimizes network training cost; (ii) object geometry is accurately represented through vertices located on object boundaries, which maintains boundary smoothness and allows the network to detect small changes between geometries; and (iii) no data interpolation is utilized for creating training data; thus accuracy of the CFD data is preserved. None of these features are achievable by extant methods based on projecting scattered CFD data into Cartesian grids and then using regular convolutional neural networks. Incompressible laminar steady flow past a cylinder with various shapes for its cross section is considered. The mass and momentum of predicted fields are conserved. We test the generalizability of our network by predicting the flow around multiple objects as well as an airfoil, even though only single objects and no airfoils are observed during training. The network predicts the flow fields hundreds of times faster than our conventional CFD solver while maintaining excellent to a reasonable accuracy. Additionally, we propose a novel deep-learning framework for predicting the permeability of porous media from their digital images. Unlike convolutional neural networks, instead of feeding the whole image volume as inputs to the network, we model the boundary between solid matrix and pore spaces as point clouds and feed them as inputs to a neural network based on the PointNet architecture. This approach overcomes the challenge of memory restriction of graphics processing units and its consequences on the choice of batch size, and convergence. Compared to convolutional neural networks, the proposed deep learning methodology provides freedom to select larger batch sizes, due to reducing significantly the size of network inputs. Specifically, we use the classification branch of PointNet and adjust it for a regression task. As a test case, two and three-dimensional synthetic digital rock images are considered. We investigate the effect of different components of our neural network on its performance. We compare our deep learning strategy with a convolutional neural network from various perspectives, specifically for the maximum possible batch size. We inspect the generalizability of our network by predicting the permeability of real-world rock samples as well as synthetic digital rocks that are statistically different from the samples used during training. The network predicts the permeability of digital rocks a few thousand times faster than a Lattice Boltzmann solver with a high level of prediction accuracy. Concerning the weakly supervised deep learning framework, we present a novel physics-informed deep learning framework for solving steady-state incompressible flow on multiple sets of irregular geometries by incorporating two main elements: using a point-cloud-based neural network to capture geometric features of computational domains and using the mean squared residuals of the governing partial differential equations, boundary conditions, and sparse observations as the loss function of the network to capture the physics. While the solution of the continuity and Navier-Stokes equations is a function of the geometry of the computational domain, current versions of physics-informed neural networks have no mechanism to express this functionally in their outputs, and thus are restricted to obtaining the solutions only for one computational domain with each training procedure. Using the proposed framework, three new facilities become available. First, the governing equations are solvable on a set of computational domains containing irregular geometries with high variations with respect to each other but requiring training only once. Second, after training the introduced framework on the set, it is now able to predict the solutions on domains with unseen geometries from seen and unseen categories as well. The former and the latter both lead to savings in computational costs. Finally, all the advantages of the point-cloud-based neural network for irregular geometries, already used for supervised learning, are transferred to the proposed physics-informed framework. The effectiveness of our framework is shown through the method of manufactured solutions and thermally-driven flow for forward and inverse problems. Furthermore, we predict steady-state Stokes flow of fluids within porous media at pore scales using sparse point observations and physics-informed PointNet (PIPN). Taking the advantages of PIPN into account, three new features become available compared to physics-informed convolutional neural networks for porous medium applications. First, the input of PIPN is exclusively the pore spaces of porous media (rather than both the pore and grain spaces). This feature significantly diminishes computational costs. Second, PIPN represents the boundary of pore spaces smoothly and realistically (rather than pixel-wise representations). Third, spatial resolution can vary over the physical domain (rather than equally spaced resolutions). This feature enables users to reach an optimal resolution with a minimum computational cost. The performance of our framework is evaluated by the study of the influence of noisy sensor data, pressure observations, and spatial correlation length. Regular physics-informed neural networks (PINNs) predict the solution of partial differential equations using sparse labeled data but only over a single domain. On the other hand, fully supervised learning models are first trained usually over a few thousand domains with known solutions (i.e., labeled data) and then predict the solution over a few hundred unseen domains. Physics-informed PointNet (PIPN) is primarily designed to fill this gap between PINNs (as weakly supervised learning models) and fully supervised learning models. We demonstrate that PIPN predicts the solution of desired partial differential equations over a few hundred domains simultaneously, while it only uses sparse labeled data. This framework benefits fast geometric designs in the industry when only sparse labeled data are available. Particularly, we show that PIPN predicts the solution of a plane stress problem over more than 500 domains with different geometries, simultaneously. Moreover, we pioneer implementing the concept of remarkable batch size (i.e., the number of geometries fed into PIPN at each sub-epoch) into PIPN. Specifically, we try batch sizes of 7, 14, 19, 38, 76, and 133. Additionally, the effect of the PIPN size, symmetric function in the PIPN architecture, and static and dynamic weights for the component of the sparse labeled data in the loss function are investigated.

Deep Learning Algorithms for Computational Mechanics on Irregular Geometries

Deep Learning Algorithms for Computational Mechanics on Irregular Geometries PDF Author: Ali Kashefi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The current dissertation proposes novel fully supervised and weakly supervised learning frameworks in the area of computational physics. Concerning the supervised deep learning framework, we present a novel deep learning framework for flow field predictions in irregular domains when the solution is a function of the geometry of either the domain or objects inside the domain. Grid vertices in a computational fluid dynamics (CFD) domain are viewed as point clouds and used as inputs to a neural network based on the PointNet architecture, which learns an end-to-end mapping between spatial positions and CFD quantities. Using our approach, (i) the network inherits desirable features of unstructured meshes (e.g., fine and coarse point spacing near the object surface and in the far field, respectively), which minimizes network training cost; (ii) object geometry is accurately represented through vertices located on object boundaries, which maintains boundary smoothness and allows the network to detect small changes between geometries; and (iii) no data interpolation is utilized for creating training data; thus accuracy of the CFD data is preserved. None of these features are achievable by extant methods based on projecting scattered CFD data into Cartesian grids and then using regular convolutional neural networks. Incompressible laminar steady flow past a cylinder with various shapes for its cross section is considered. The mass and momentum of predicted fields are conserved. We test the generalizability of our network by predicting the flow around multiple objects as well as an airfoil, even though only single objects and no airfoils are observed during training. The network predicts the flow fields hundreds of times faster than our conventional CFD solver while maintaining excellent to a reasonable accuracy. Additionally, we propose a novel deep-learning framework for predicting the permeability of porous media from their digital images. Unlike convolutional neural networks, instead of feeding the whole image volume as inputs to the network, we model the boundary between solid matrix and pore spaces as point clouds and feed them as inputs to a neural network based on the PointNet architecture. This approach overcomes the challenge of memory restriction of graphics processing units and its consequences on the choice of batch size, and convergence. Compared to convolutional neural networks, the proposed deep learning methodology provides freedom to select larger batch sizes, due to reducing significantly the size of network inputs. Specifically, we use the classification branch of PointNet and adjust it for a regression task. As a test case, two and three-dimensional synthetic digital rock images are considered. We investigate the effect of different components of our neural network on its performance. We compare our deep learning strategy with a convolutional neural network from various perspectives, specifically for the maximum possible batch size. We inspect the generalizability of our network by predicting the permeability of real-world rock samples as well as synthetic digital rocks that are statistically different from the samples used during training. The network predicts the permeability of digital rocks a few thousand times faster than a Lattice Boltzmann solver with a high level of prediction accuracy. Concerning the weakly supervised deep learning framework, we present a novel physics-informed deep learning framework for solving steady-state incompressible flow on multiple sets of irregular geometries by incorporating two main elements: using a point-cloud-based neural network to capture geometric features of computational domains and using the mean squared residuals of the governing partial differential equations, boundary conditions, and sparse observations as the loss function of the network to capture the physics. While the solution of the continuity and Navier-Stokes equations is a function of the geometry of the computational domain, current versions of physics-informed neural networks have no mechanism to express this functionally in their outputs, and thus are restricted to obtaining the solutions only for one computational domain with each training procedure. Using the proposed framework, three new facilities become available. First, the governing equations are solvable on a set of computational domains containing irregular geometries with high variations with respect to each other but requiring training only once. Second, after training the introduced framework on the set, it is now able to predict the solutions on domains with unseen geometries from seen and unseen categories as well. The former and the latter both lead to savings in computational costs. Finally, all the advantages of the point-cloud-based neural network for irregular geometries, already used for supervised learning, are transferred to the proposed physics-informed framework. The effectiveness of our framework is shown through the method of manufactured solutions and thermally-driven flow for forward and inverse problems. Furthermore, we predict steady-state Stokes flow of fluids within porous media at pore scales using sparse point observations and physics-informed PointNet (PIPN). Taking the advantages of PIPN into account, three new features become available compared to physics-informed convolutional neural networks for porous medium applications. First, the input of PIPN is exclusively the pore spaces of porous media (rather than both the pore and grain spaces). This feature significantly diminishes computational costs. Second, PIPN represents the boundary of pore spaces smoothly and realistically (rather than pixel-wise representations). Third, spatial resolution can vary over the physical domain (rather than equally spaced resolutions). This feature enables users to reach an optimal resolution with a minimum computational cost. The performance of our framework is evaluated by the study of the influence of noisy sensor data, pressure observations, and spatial correlation length. Regular physics-informed neural networks (PINNs) predict the solution of partial differential equations using sparse labeled data but only over a single domain. On the other hand, fully supervised learning models are first trained usually over a few thousand domains with known solutions (i.e., labeled data) and then predict the solution over a few hundred unseen domains. Physics-informed PointNet (PIPN) is primarily designed to fill this gap between PINNs (as weakly supervised learning models) and fully supervised learning models. We demonstrate that PIPN predicts the solution of desired partial differential equations over a few hundred domains simultaneously, while it only uses sparse labeled data. This framework benefits fast geometric designs in the industry when only sparse labeled data are available. Particularly, we show that PIPN predicts the solution of a plane stress problem over more than 500 domains with different geometries, simultaneously. Moreover, we pioneer implementing the concept of remarkable batch size (i.e., the number of geometries fed into PIPN at each sub-epoch) into PIPN. Specifically, we try batch sizes of 7, 14, 19, 38, 76, and 133. Additionally, the effect of the PIPN size, symmetric function in the PIPN architecture, and static and dynamic weights for the component of the sparse labeled data in the loss function are investigated.

Deep Learning in Computational Mechanics

Deep Learning in Computational Mechanics PDF Author: Stefan Kollmannsberger
Publisher: Springer Nature
ISBN: 3030765873
Category : Technology & Engineering
Languages : en
Pages : 108

Book Description
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.

Computational Mechanics with Deep Learning

Computational Mechanics with Deep Learning PDF Author: Genki Yagawa
Publisher: Springer Nature
ISBN: 3031118472
Category : Technology & Engineering
Languages : en
Pages : 408

Book Description
This book is intended for students, engineers, and researchers interested in both computational mechanics and deep learning. It presents the mathematical and computational foundations of Deep Learning with detailed mathematical formulas in an easy-to-understand manner. It also discusses various applications of Deep Learning in Computational Mechanics, with detailed explanations of the Computational Mechanics fundamentals selected there. Sample programs are included for the reader to try out in practice. This book is therefore useful for a wide range of readers interested in computational mechanics and deep learning.

Geometry of Deep Learning

Geometry of Deep Learning PDF Author: Jong Chul Ye
Publisher: Springer Nature
ISBN: 9811660468
Category : Mathematics
Languages : en
Pages : 338

Book Description
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.

Deep Learning and Computational Physics

Deep Learning and Computational Physics PDF Author: Deep Ray
Publisher: Springer Nature
ISBN: 3031593456
Category :
Languages : en
Pages : 160

Book Description


Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems

Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems PDF Author: Yinpeng Wang
Publisher: CRC Press
ISBN: 100089665X
Category : Computers
Languages : en
Pages : 200

Book Description
This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems. Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced. As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.

Biomedical Visualisation

Biomedical Visualisation PDF Author: Paul M. Rea
Publisher: Springer Nature
ISBN: 3030877795
Category : Medical
Languages : en
Pages : 351

Book Description
This edited book explores the use of technology to enable us to visualise the life sciences in a more meaningful and engaging way. It will enable those interested in visualisation techniques to gain a better understanding of the applications that can be used in visualisation, imaging and analysis, education, engagement and training. The reader will also be able to learn about the use of visualisation techniques and technologies for the historical and forensic settings. The chapters presented in this volume cover such a diverse range of topics, with something for everyone. We present here chapters on 3D visualising novel stent grafts to aid treatment of aortic aneuryms; confocal microscopy constructed vascular models in patient education; 3D patient specific virtual reconstructions in surgery; virtual reality in upper limb rehabilitation in patients with multiple sclerosis and virtual clinical wards. In addition, we present chapters in artificial intelligence in ultrasound guided regional anaesthesia; carpal tunnel release visualisation techniques; visualising for embryology education and artificial intelligence data on bone mechanics. Finally we conclude with chapters on visualising patient communication in a general practice setting; digital facial depictions of people from the past; instructor made cadaveric videos, novel cadaveric techniques for enhancing visualisation of the human body and finally interactive educational videos and screencasts. This book explores the use of technologies from a range of fields to provide engaging and meaningful visual representations of the biomedical sciences. It is therefore an interesting read for researchers, developers and educators who want to learn how visualisation techniques can be used successfully for a variety of purposes, such as educating students or training staff, interacting with patients and biomedical procedures in general.

Data-driven Modelling and Scientific Machine Learning in Continuum Physics

Data-driven Modelling and Scientific Machine Learning in Continuum Physics PDF Author: Krishna Garikipati
Publisher: Springer Nature
ISBN: 3031620291
Category :
Languages : en
Pages : 233

Book Description


Numerical Algorithms

Numerical Algorithms PDF Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400

Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Model Reduction and Approximation

Model Reduction and Approximation PDF Author: Peter Benner
Publisher: SIAM
ISBN: 1611974828
Category : Science
Languages : en
Pages : 421

Book Description
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.