Decision-making Strategies for Automated Driving in Urban Environments PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Decision-making Strategies for Automated Driving in Urban Environments PDF full book. Access full book title Decision-making Strategies for Automated Driving in Urban Environments by Antonio Artuñedo. Download full books in PDF and EPUB format.

Decision-making Strategies for Automated Driving in Urban Environments

Decision-making Strategies for Automated Driving in Urban Environments PDF Author: Antonio Artuñedo
Publisher: Springer Nature
ISBN: 3030459055
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.

Decision-making Strategies for Automated Driving in Urban Environments

Decision-making Strategies for Automated Driving in Urban Environments PDF Author: Antonio Artuñedo
Publisher: Springer Nature
ISBN: 3030459055
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.

Safe and Scalable Planning Under Uncertainty for Autonomous Driving

Safe and Scalable Planning Under Uncertainty for Autonomous Driving PDF Author: Maxime Thomas Marcel Bouton
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Autonomous driving has the potential to significantly improve safety. Although progress has been made in recent years to deploy automated driving technologies, many situations handled on a daily basis by human drivers remain challenging for autonomous vehicles, such as navigating urban environments. They must reach their goal safely and efficiently while considering a multitude of traffic participants with rapidly changing behavior. Hand-engineering strategies to navigate such environments requires anticipating many possible situations and finding a suitable behavior for each, which places a large burden on the designer and is unlikely to scale to complicated situations. In addition, autonomous vehicles rely on on-board perception systems that give noisy estimates of the location and velocity of others on the road and are sensitive to occlusions. Autonomously navigating urban environments requires algorithms that reason about interactions with and between traffic participants with limited information. This thesis addresses the problem of automatically generating decision making strategies for autonomous vehicles in urban environments. Previous approaches relied on planning with respect to a mathematical model of the environment but have many limitations. A partially observable Markov decision process (POMDP) is a standard model for sequential decision making problems in dynamic, uncertain environments with imperfect sensor measurements. This thesis demonstrates a generic representation of driving scenarios as POMDPs, considering sensor occlusions and interactions between road users. A key contribution of this thesis is a methodology to scale POMDP approaches to complex environments involving a large number of traffic participants. To reduce the computational cost of considering multiple traffic participants, a decomposition method leveraging the strategies of interacting with a subset of road users is introduced. Decomposition methods can approximate the solutions to large sequential decision making problems at the expense of sacrificing optimality. This thesis introduces a new algorithm that uses deep reinforcement learning to bridge the gap with the optimal solution. Establishing trust in the generated decision strategies is also necessary for the deployment of autonomous vehicles. Methods to constrain a policy trained using reinforcement learning are introduced and combined with the proposed decomposition techniques. This method allows to learn policies with safety constraints. To address state uncertainty, a new methodology for computing probabilistic safety guarantees in partially observable domains is introduced. It is shown that the new method is more flexible and more scalable than previous work. The algorithmic contributions present in this thesis are applied to a variety of driving scenarios. Each algorithm is evaluated in simulation and compared to previous work. It is shown that the POMDP formulation in combination with scalable solving methods provide a flexible framework for planning under uncertainty for autonomous driving.

Decision-Making Techniques for Autonomous Vehicles

Decision-Making Techniques for Autonomous Vehicles PDF Author: Jorge Villagra
Publisher: Elsevier
ISBN: 0323985491
Category : Technology & Engineering
Languages : en
Pages : 426

Book Description
Decision-Making Techniques for Autonomous Vehicles provides a general overview of control and decision-making tools that could be used in autonomous vehicles. Motion prediction and planning tools are presented, along with the use of machine learning and adaptability to improve performance of algorithms in real scenarios. The book then examines how driver monitoring and behavior analysis are used produce comprehensive and predictable reactions in automated vehicles. The book ultimately covers regulatory and ethical issues to consider for implementing correct and robust decision-making. This book is for researchers as well as Masters and PhD students working with autonomous vehicles and decision algorithms. Provides a complete overview of decision-making and control techniques for autonomous vehicles Includes technical, physical, and mathematical explanations to provide knowledge for implementation of tools Features machine learning to improve performance of decision-making algorithms Shows how regulations and ethics influence the development and implementation of these algorithms in real scenarios

Human-Like Decision Making and Control for Autonomous Driving

Human-Like Decision Making and Control for Autonomous Driving PDF Author: Peng Hang
Publisher: CRC Press
ISBN: 1000624951
Category : Mathematics
Languages : en
Pages : 201

Book Description
This book details cutting-edge research into human-like driving technology, utilising game theory to better suit a human and machine hybrid driving environment. Covering feature identification and modelling of human driving behaviours, the book explains how to design an algorithm for decision making and control of autonomous vehicles in complex scenarios. Beginning with a review of current research in the field, the book uses this as a springboard from which to present a new theory of human-like driving framework for autonomous vehicles. Chapters cover system models of decision making and control, driving safety, riding comfort and travel efficiency. Throughout the book, game theory is applied to human-like decision making, enabling the autonomous vehicle and the human driver interaction to be modelled using noncooperative game theory approach. It also uses game theory to model collaborative decision making between connected autonomous vehicles. This framework enables human-like decision making and control of autonomous vehicles, which leads to safer and more efficient driving in complicated traffic scenarios. The book will be of interest to students and professionals alike, in the field of automotive engineering, computer engineering and control engineering.

Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception PDF Author: Hubmann, Constantin
Publisher: KIT Scientific Publishing
ISBN: 3731510391
Category : Technology & Engineering
Languages : en
Pages : 178

Book Description
This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty.

Decision Making, Planning, and Control Strategies for Intelligent Vehicles

Decision Making, Planning, and Control Strategies for Intelligent Vehicles PDF Author: Haotian Cao
Publisher: Springer Nature
ISBN: 3031015061
Category : Technology & Engineering
Languages : en
Pages : 128

Book Description
The intelligent vehicle will play a crucial and essential role in the development of the future intelligent transportation system, which is developing toward the connected driving environment, ultimate driving safety, and comforts, as well as green efficiency. While the decision making, planning, and control are extremely vital components of the intelligent vehicle, these modules act as a bridge, connecting the subsystem of the environmental perception and the bottom-level control execution of the vehicle as well. This short book covers various strategies of designing the decision making, trajectory planning, and tracking control, as well as share driving, of the human-automation to adapt to different levels of the automated driving system. More specifically, we introduce an end-to-end decision-making module based on the deep Q-learning, and improved path-planning methods based on artificial potentials and elastic bands which are designed for obstacle avoidance. Then, the optimal method based on the convex optimization and the natural cubic spline is presented. As for the speed planning, planning methods based on the multi-object optimization and high-order polynomials, and a method with convex optimization and natural cubic splines, are proposed for the non-vehicle-following scenario (e.g., free driving, lane change, obstacle avoidance), while the planning method based on vehicle-following kinematics and the model predictive control (MPC) is adopted for the car-following scenario. We introduce two robust tracking methods for the trajectory following. The first one, based on nonlinear vehicle longitudinal or path-preview dynamic systems, utilizes the adaptive sliding mode control (SMC) law which can compensate for uncertainties to follow the speed or path profiles. The second one is based on the five-degrees-of-freedom nonlinear vehicle dynamical system that utilizes the linearized time-varying MPC to track the speed and path profile simultaneously. Toward human-automation cooperative driving systems, we introduce two control strategies to address the control authority and conflict management problems between the human driver and the automated driving systems. Driving safety field and game theory are utilized to propose a game-based strategy, which is used to deal with path conflicts during obstacle avoidance. Driver's driving intention, situation assessment, and performance index are employed for the development of the fuzzy-based strategy. Multiple case studies and demos are included in each chapter to show the effectiveness of the proposed approach. We sincerely hope the contents of this short book provide certain theoretical guidance and technical supports for the development of intelligent vehicle technology.

Safety and Security of Cyber-Physical Systems

Safety and Security of Cyber-Physical Systems PDF Author: Frank J. Furrer
Publisher: Springer Nature
ISBN: 365837182X
Category : Computers
Languages : en
Pages : 559

Book Description
Cyber-physical systems (CPSs) consist of software-controlled computing devices communicating with each other and interacting with the physical world through sensors and actuators. Because most of the functionality of a CPS is implemented in software, the software is of crucial importance for the safety and security of the CPS. This book presents principle-based engineering for the development and operation of dependable software. The knowledge in this book addresses organizations that want to strengthen their methodologies to build safe and secure software for mission-critical cyber-physical systems. The book: • Presents a successful strategy for the management of vulnerabilities, threats, and failures in mission-critical cyber-physical systems; • Offers deep practical insight into principle-based software development (62 principles are introduced and cataloged into five categories: Business & organization, general principles, safety, security, and risk management principles); • Provides direct guidance on architecting and operating dependable cyber-physical systems for software managers and architects.

Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions

Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions PDF Author: Harald Waschl
Publisher: Springer
ISBN: 331991569X
Category : Technology & Engineering
Languages : en
Pages : 235

Book Description
This book describes different methods that are relevant to the development and testing of control algorithms for advanced driver assistance systems (ADAS) and automated driving functions (ADF). These control algorithms need to respond safely, reliably and optimally in varying operating conditions. Also, vehicles have to comply with safety and emission legislation. The text describes how such control algorithms can be developed, tested and verified for use in real-world driving situations. Owing to the complex interaction of vehicles with the environment and different traffic participants, an almost infinite number of possible scenarios and situations that need to be considered may exist. The book explains new methods to address this complexity, with reference to human interaction modelling, various theoretical approaches to the definition of real-world scenarios, and with practically-oriented examples and contributions, to ensure efficient development and testing of ADAS and ADF. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions is a collection of articles by international experts in the field representing theoretical and application-based points of view. As such, the methods and examples demonstrated in the book will be a valuable source of information for academic and industrial researchers, as well as for automotive companies and suppliers.

Planning and Simulation for Autonomous Vehicles in Urban Traffic Scenarios

Planning and Simulation for Autonomous Vehicles in Urban Traffic Scenarios PDF Author: Xinchen Li (Ph. D. in electrical engineering)
Publisher:
ISBN:
Category : Automated vehicles
Languages : en
Pages : 0

Book Description
Traffic accidents result in a high number of fatalities each year. This brings up the importance of developing Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS), due to their potential of increasing traffic safety by reducing vehicle crashes caused by driver errors. It could also be helpful to deploy the intelligent transportation systems (ITS) in different traffic scenarios to increase the efficiency of traffic flow and enlarge the traffic capacity. Planning and control of the autonomous vehicles, the two essential modules in autonomous driving, are still facing severe challenges in adapting to various traffic scenarios and complex environments. The planning and decision making of vehicles in urban traffic environment are still a big challenge for autonomous vehicles due to its complexity and uncertainties. Hence it is necessary to develop decision making and planning algorithms for vehicles in urban traffic, especially in intersections. Also, velocity profile planning for autonomous vehicles is also required based on various requirements according to the environment. Additionally, a convenient method for testing and validating the developed algorithms is also required. Hence a good simulation environment is important in the field of autonomous vehicles. This dissertation contributes to planning and decision making of autonomous vehicles in urban traffic scenarios as well as developing a way of generating realistic simulation environments as test beds to validate developed autonomous driving algorithms. Decision making methods and planning methods for autonomous shuttles and autonomous vehicles in urban traffic are proposed. A rule based decision maker working for last mile problem is introduced for an autonomous shuttle so that the autonomous shuttle can deal with typical traffic on designated routes. Then to deal with complex and uncertain urban traffic scenarios when the ego autonomous vehicles doesn’t have full observability over other vehicles’ states, a Partially Observable Markov Decision Making Process (POMDP) based decision making algorithm is proposed for solving the roundabout intersection planning problem with multiple vehicles involved. Moreover, a velocity planning method for autonomous shuttle in geo-fenced area is developed, such that passengers in the autonomous shuttle are safe and comfortable. In order to improve the performance of decision making algorithms, vehicle behavior and trajectory prediction methods are also studied. Sensor perception is an important part of the autonomous driving as the ego autonomous vehicle is detecting the environment and surrounding vehicles all the time. Noise is inevitable during the perception and some internal states of other vehicles are not detected. Hence, a Kalman filter based vehicle trajectory tracking is introduced to take care the measurement noise in the perception as well as to estimate the vehicle internal states. A change point detection based policy prediction method is also introduced for determining the most likely vehicle behavior given a series of observation data along the vehicle trajectory. Combining both methods, a vehicle trajectory prediction over a future period of time is also proposed. In addition, a method for developing simulation environment using real map data and 3D rendering based on a game engine is presented as a powerful tool for developing simulations for intelligent transportation systems. All the proposed methods are provided with simulation and test results to demonstrate the efficiency.

Real-time Decision Making by Driverless City Vehicles

Real-time Decision Making by Driverless City Vehicles PDF Author: Andrei Edmond Furda
Publisher:
ISBN:
Category : Automobile driving
Languages : en
Pages : 446

Book Description
Abstract : This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle{u2019}s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.