Author: Nikolai M. Adrianov
Publisher: American Mathematical Soc.
ISBN: 1470456346
Category : Education
Languages : en
Pages : 202
Book Description
The French expression “dessins d'enfants” means children's drawings. This term was coined by the great French mathematician Alexandre Grothendieck in order to denominate a method of pictorial representation of some highly interesting classes of polynomials and rational functions. The polynomials studied in this book take their origin in number theory. The authors show how, by drawing simple pictures, one can prove some long-standing conjectures and formulate new ones. The theory presented here touches upon many different fields of mathematics. The major part of the book is quite elementary and is easily accessible to an undergraduate student. The less elementary parts, such as Galois theory or group representations and their characters, would need a more profound knowledge of mathematics. The reader may either take the basic facts of these theories for granted or use our book as a motivation and a first approach to these subjects.
Davenport–Zannier Polynomials and Dessins d’Enfants
Author: Nikolai M. Adrianov
Publisher: American Mathematical Soc.
ISBN: 1470456346
Category : Education
Languages : en
Pages : 202
Book Description
The French expression “dessins d'enfants” means children's drawings. This term was coined by the great French mathematician Alexandre Grothendieck in order to denominate a method of pictorial representation of some highly interesting classes of polynomials and rational functions. The polynomials studied in this book take their origin in number theory. The authors show how, by drawing simple pictures, one can prove some long-standing conjectures and formulate new ones. The theory presented here touches upon many different fields of mathematics. The major part of the book is quite elementary and is easily accessible to an undergraduate student. The less elementary parts, such as Galois theory or group representations and their characters, would need a more profound knowledge of mathematics. The reader may either take the basic facts of these theories for granted or use our book as a motivation and a first approach to these subjects.
Publisher: American Mathematical Soc.
ISBN: 1470456346
Category : Education
Languages : en
Pages : 202
Book Description
The French expression “dessins d'enfants” means children's drawings. This term was coined by the great French mathematician Alexandre Grothendieck in order to denominate a method of pictorial representation of some highly interesting classes of polynomials and rational functions. The polynomials studied in this book take their origin in number theory. The authors show how, by drawing simple pictures, one can prove some long-standing conjectures and formulate new ones. The theory presented here touches upon many different fields of mathematics. The major part of the book is quite elementary and is easily accessible to an undergraduate student. The less elementary parts, such as Galois theory or group representations and their characters, would need a more profound knowledge of mathematics. The reader may either take the basic facts of these theories for granted or use our book as a motivation and a first approach to these subjects.
Davenport-Zannier Polynomials and Dessins D'Enfants
Author: NIKOLAI M. ADRIANOV;FEDOR PAKOVICH;ALEXANDER K. ZV.
Publisher:
ISBN: 9781470460297
Category : Algebraic fields
Languages : en
Pages : 187
Book Description
The French expression ""dessins d'enfants"" means children's drawings. This term was coined by the great French mathematician Alexandre Grothendieck in order to denominate a method of pictorial representation of some highly interesting classes of polynomials and rational functions. The polynomials studied in this book take their origin in number theory. The authors show how, by drawing simple pictures, one can prove some long-standing conjectures and formulate new ones. The theory presented here touches upon many different fields of mathematics. The major part of the book is quite elementary a.
Publisher:
ISBN: 9781470460297
Category : Algebraic fields
Languages : en
Pages : 187
Book Description
The French expression ""dessins d'enfants"" means children's drawings. This term was coined by the great French mathematician Alexandre Grothendieck in order to denominate a method of pictorial representation of some highly interesting classes of polynomials and rational functions. The polynomials studied in this book take their origin in number theory. The authors show how, by drawing simple pictures, one can prove some long-standing conjectures and formulate new ones. The theory presented here touches upon many different fields of mathematics. The major part of the book is quite elementary a.
The Adams Spectral Sequence for Topological Modular Forms
Author: Robert R. Bruner
Publisher: American Mathematical Society
ISBN: 1470469588
Category : Mathematics
Languages : en
Pages : 690
Book Description
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.
Publisher: American Mathematical Society
ISBN: 1470469588
Category : Mathematics
Languages : en
Pages : 690
Book Description
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.
The Classification of the Finite Simple Groups, Number 9
Author: Inna Capdeboscq
Publisher: American Mathematical Society
ISBN: 1470464373
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book is the ninth volume in a series whose goal is to furnish a careful and largely self-contained proof of the classification theorem for the finite simple groups. Having completed the classification of the simple groups of odd type as well as the classification of the simple groups of generic even type (modulo uniqueness theorems to appear later), the current volume begins the classification of the finite simple groups of special even type. The principal result of this volume is a classification of the groups of bicharacteristic type, i.e., of both even type and of $p$-type for a suitable odd prime $p$. It is here that the largest sporadic groups emerge, namely the Monster, the Baby Monster, the largest Conway group, and the three Fischer groups, along with six finite groups of Lie type over small fields, several of which play a major role as subgroups or sections of these sporadic groups.
Publisher: American Mathematical Society
ISBN: 1470464373
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book is the ninth volume in a series whose goal is to furnish a careful and largely self-contained proof of the classification theorem for the finite simple groups. Having completed the classification of the simple groups of odd type as well as the classification of the simple groups of generic even type (modulo uniqueness theorems to appear later), the current volume begins the classification of the finite simple groups of special even type. The principal result of this volume is a classification of the groups of bicharacteristic type, i.e., of both even type and of $p$-type for a suitable odd prime $p$. It is here that the largest sporadic groups emerge, namely the Monster, the Baby Monster, the largest Conway group, and the three Fischer groups, along with six finite groups of Lie type over small fields, several of which play a major role as subgroups or sections of these sporadic groups.
Perverse Sheaves and Applications to Representation Theory
Author: Pramod N. Achar
Publisher: American Mathematical Soc.
ISBN: 1470455978
Category : Education
Languages : en
Pages : 562
Book Description
Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.
Publisher: American Mathematical Soc.
ISBN: 1470455978
Category : Education
Languages : en
Pages : 562
Book Description
Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.
Maximal Function Methods for Sobolev Spaces
Author: Juha Kinnunen
Publisher: American Mathematical Soc.
ISBN: 1470465752
Category : Education
Languages : en
Pages : 354
Book Description
This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
Publisher: American Mathematical Soc.
ISBN: 1470465752
Category : Education
Languages : en
Pages : 354
Book Description
This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
Local Operators in Integrable Models I
Author: Michio Jimbo
Publisher: American Mathematical Soc.
ISBN: 1470465523
Category : Education
Languages : en
Pages : 192
Book Description
Integrable models in statistical mechanics and quantum field theory constitute a rich research field at the crossroads of modern mathematics and theoretical physics. An important issue to understand is the space of local operators in the system and, ultimately, their correlation functions and form factors. This book is the first published monograph on this subject. It treats integrable lattice models, notably the six-vertex model and the XXZ Heisenberg spin chain. A pair of fermions is introduced and used to create a basis of the space of local operators, leading to the result that all correlation functions at finite distances are expressible in terms of two transcendental functions with rational coefficients. Step-by-step explanations are given for all materials necessary for this construction, ranging from algebraic Bethe ansatz, representations of quantum groups, and the Bazhanov-Lukyanov-Zamolodchikov construction in conformal field theory to Riemann surfaces and their Jacobians. Several examples and applications are given along with numerical results. Going through the book, readers will find themselves at the forefront of this rapidly developing research field.
Publisher: American Mathematical Soc.
ISBN: 1470465523
Category : Education
Languages : en
Pages : 192
Book Description
Integrable models in statistical mechanics and quantum field theory constitute a rich research field at the crossroads of modern mathematics and theoretical physics. An important issue to understand is the space of local operators in the system and, ultimately, their correlation functions and form factors. This book is the first published monograph on this subject. It treats integrable lattice models, notably the six-vertex model and the XXZ Heisenberg spin chain. A pair of fermions is introduced and used to create a basis of the space of local operators, leading to the result that all correlation functions at finite distances are expressible in terms of two transcendental functions with rational coefficients. Step-by-step explanations are given for all materials necessary for this construction, ranging from algebraic Bethe ansatz, representations of quantum groups, and the Bazhanov-Lukyanov-Zamolodchikov construction in conformal field theory to Riemann surfaces and their Jacobians. Several examples and applications are given along with numerical results. Going through the book, readers will find themselves at the forefront of this rapidly developing research field.
Linear and Quasilinear Parabolic Systems: Sobolev Space Theory
Author: David Hoff
Publisher: American Mathematical Soc.
ISBN: 1470461617
Category : Education
Languages : en
Pages : 226
Book Description
This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.
Publisher: American Mathematical Soc.
ISBN: 1470461617
Category : Education
Languages : en
Pages : 226
Book Description
This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.
Numerical Algorithms for Number Theory: Using Pari/GP
Author: Karim Belabas
Publisher: American Mathematical Soc.
ISBN: 1470463512
Category : Education
Languages : en
Pages : 429
Book Description
This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex L L-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.
Publisher: American Mathematical Soc.
ISBN: 1470463512
Category : Education
Languages : en
Pages : 429
Book Description
This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex L L-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.
One-Dimensional Turbulence and the Stochastic Burgers Equation
Author: Alexandre Boritchev
Publisher: American Mathematical Soc.
ISBN: 1470464365
Category : Education
Languages : en
Pages : 192
Book Description
This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov–Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L 1 L1-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.
Publisher: American Mathematical Soc.
ISBN: 1470464365
Category : Education
Languages : en
Pages : 192
Book Description
This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov–Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L 1 L1-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.