Data Structures & Their Algorithms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Data Structures & Their Algorithms PDF full book. Access full book title Data Structures & Their Algorithms by Harry R. Lewis. Download full books in PDF and EPUB format.

Data Structures & Their Algorithms

Data Structures & Their Algorithms PDF Author: Harry R. Lewis
Publisher: Addison Wesley
ISBN:
Category : Computers
Languages : en
Pages : 536

Book Description
Using only practically useful techniques, this book teaches methods for organizing, reorganizing, exploring, and retrieving data in digital computers, and the mathematical analysis of those techniques. The authors present analyses that are relatively brief and non-technical but illuminate the important performance characteristics of the algorithms. Data Structures and Their Algorithms covers algorithms, not the expression of algorithms in the syntax of particular programming languages. The authors have adopted a pseudocode notation that is readily understandable to programmers but has a simple syntax.

Data Structures & Their Algorithms

Data Structures & Their Algorithms PDF Author: Harry R. Lewis
Publisher: Addison Wesley
ISBN:
Category : Computers
Languages : en
Pages : 536

Book Description
Using only practically useful techniques, this book teaches methods for organizing, reorganizing, exploring, and retrieving data in digital computers, and the mathematical analysis of those techniques. The authors present analyses that are relatively brief and non-technical but illuminate the important performance characteristics of the algorithms. Data Structures and Their Algorithms covers algorithms, not the expression of algorithms in the syntax of particular programming languages. The authors have adopted a pseudocode notation that is readily understandable to programmers but has a simple syntax.

Algorithms and Data Structures for Massive Datasets

Algorithms and Data Structures for Massive Datasets PDF Author: Dzejla Medjedovic
Publisher: Simon and Schuster
ISBN: 1638356564
Category : Computers
Languages : en
Pages : 302

Book Description
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting

An Introduction to Data Structures and Algorithms

An Introduction to Data Structures and Algorithms PDF Author: J.A. Storer
Publisher: Springer Science & Business Media
ISBN: 146120075X
Category : Computers
Languages : en
Pages : 609

Book Description
Data structures and algorithms are presented at the college level in a highly accessible format that presents material with one-page displays in a way that will appeal to both teachers and students. The thirteen chapters cover: Models of Computation, Lists, Induction and Recursion, Trees, Algorithm Design, Hashing, Heaps, Balanced Trees, Sets Over a Small Universe, Graphs, Strings, Discrete Fourier Transform, Parallel Computation. Key features: Complicated concepts are expressed clearly in a single page with minimal notation and without the "clutter" of the syntax of a particular programming language; algorithms are presented with self-explanatory "pseudo-code." * Chapters 1-4 focus on elementary concepts, the exposition unfolding at a slower pace. Sample exercises with solutions are provided. Sections that may be skipped for an introductory course are starred. Requires only some basic mathematics background and some computer programming experience. * Chapters 5-13 progress at a faster pace. The material is suitable for undergraduates or first-year graduates who need only review Chapters 1 -4. * This book may be used for a one-semester introductory course (based on Chapters 1-4 and portions of the chapters on algorithm design, hashing, and graph algorithms) and for a one-semester advanced course that starts at Chapter 5. A year-long course may be based on the entire book. * Sorting, often perceived as rather technical, is not treated as a separate chapter, but is used in many examples (including bubble sort, merge sort, tree sort, heap sort, quick sort, and several parallel algorithms). Also, lower bounds on sorting by comparisons are included with the presentation of heaps in the context of lower bounds for comparison-based structures. * Chapter 13 on parallel models of computation is something of a mini-book itself, and a good way to end a course. Although it is not clear what parallel

A Common-Sense Guide to Data Structures and Algorithms, Second Edition

A Common-Sense Guide to Data Structures and Algorithms, Second Edition PDF Author: Jay Wengrow
Publisher: Pragmatic Bookshelf
ISBN: 1680508059
Category : Computers
Languages : en
Pages : 737

Book Description
Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today’s web and mobile apps. Take a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code, with examples in JavaScript, Python, and Ruby. This new and revised second edition features new chapters on recursion, dynamic programming, and using Big O in your daily work. Use Big O notation to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You’ll even encounter a single keyword that can give your code a turbo boost. Practice your new skills with exercises in every chapter, along with detailed solutions. Use these techniques today to make your code faster and more scalable.

Data Structures and Network Algorithms

Data Structures and Network Algorithms PDF Author: Robert Endre Tarjan
Publisher: SIAM
ISBN: 9781611970265
Category : Technology & Engineering
Languages : en
Pages : 138

Book Description
There has been an explosive growth in the field of combinatorial algorithms. These algorithms depend not only on results in combinatorics and especially in graph theory, but also on the development of new data structures and new techniques for analyzing algorithms. Four classical problems in network optimization are covered in detail, including a development of the data structures they use and an analysis of their running time. Data Structures and Network Algorithms attempts to provide the reader with both a practical understanding of the algorithms, described to facilitate their easy implementation, and an appreciation of the depth and beauty of the field of graph algorithms.

Dive Into Algorithms

Dive Into Algorithms PDF Author: Bradford Tuckfield
Publisher: No Starch Press
ISBN: 1718500696
Category : Computers
Languages : en
Pages : 250

Book Description
Dive Into Algorithms is a broad introduction to algorithms using the Python Programming Language. Dive Into Algorithms is a wide-ranging, Pythonic tour of many of the world's most interesting algorithms. With little more than a bit of computer programming experience and basic high-school math, you'll explore standard computer science algorithms for searching, sorting, and optimization; human-based algorithms that help us determine how to catch a baseball or eat the right amount at a buffet; and advanced algorithms like ones used in machine learning and artificial intelligence. You'll even explore how ancient Egyptians and Russian peasants used algorithms to multiply numbers, how the ancient Greeks used them to find greatest common divisors, and how Japanese scholars in the age of samurai designed algorithms capable of generating magic squares. You'll explore algorithms that are useful in pure mathematics and learn how mathematical ideas can improve algorithms. You'll learn about an algorithm for generating continued fractions, one for quick calculations of square roots, and another for generating seemingly random sets of numbers. You'll also learn how to: • Use algorithms to debug code, maximize revenue, schedule tasks, and create decision trees • Measure the efficiency and speed of algorithms • Generate Voronoi diagrams for use in various geometric applications • Use algorithms to build a simple chatbot, win at board games, or solve sudoku puzzles • Write code for gradient ascent and descent algorithms that can find the maxima and minima of functions • Use simulated annealing to perform global optimization • Build a decision tree to predict happiness based on a person's characteristics Once you've finished this book you'll understand how to code and implement important algorithms as well as how to measure and optimize their performance, all while learning the nitty-gritty details of today's most powerful algorithms.

Open Data Structures

Open Data Structures PDF Author: Pat Morin
Publisher: Athabasca University Press
ISBN: 1927356385
Category : Computers
Languages : en
Pages : 336

Book Description
Introduction -- Array-based lists -- Linked lists -- Skiplists -- Hash tables -- Binary trees -- Random binary search trees -- Scapegoat trees -- Red-black trees -- Heaps -- Sorting algorithms -- Graphs -- Data structures for integers -- External memory searching.

Advanced Algorithms and Data Structures

Advanced Algorithms and Data Structures PDF Author: Marcello La Rocca
Publisher: Simon and Schuster
ISBN: 1638350221
Category : Computers
Languages : en
Pages : 768

Book Description
Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization

Algorithms and Data Structures

Algorithms and Data Structures PDF Author: Kurt Mehlhorn
Publisher: Springer Science & Business Media
ISBN: 3540779787
Category : Computers
Languages : en
Pages : 300

Book Description
Algorithms are at the heart of every nontrivial computer application, and algorithmics is a modern and active area of computer science. Every computer scientist and every professional programmer should know about the basic algorithmic toolbox: structures that allow efficient organization and retrieval of data, frequently used algorithms, and basic techniques for modeling, understanding and solving algorithmic problems. This book is a concise introduction addressed to students and professionals familiar with programming and basic mathematical language. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, and optimization. The algorithms are presented in a modern way, with explicitly formulated invariants, and comment on recent trends such as algorithm engineering, memory hierarchies, algorithm libraries and certifying algorithms. The authors use pictures, words and high-level pseudocode to explain the algorithms, and then they present more detail on efficient implementations using real programming languages like C++ and Java. The authors have extensive experience teaching these subjects to undergraduates and graduates, and they offer a clear presentation, with examples, pictures, informal explanations, exercises, and some linkage to the real world. Most chapters have the same basic structure: a motivation for the problem, comments on the most important applications, and then simple solutions presented as informally as possible and as formally as necessary. For the more advanced issues, this approach leads to a more mathematical treatment, including some theorems and proofs. Finally, each chapter concludes with a section on further findings, providing views on the state of research, generalizations and advanced solutions.

Think Data Structures

Think Data Structures PDF Author: Allen B. Downey
Publisher: "O'Reilly Media, Inc."
ISBN: 1491972319
Category : Computers
Languages : en
Pages : 149

Book Description
If you’re a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering—data structures and algorithms—in a way that’s clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You’ll explore the important classes in the Java collections framework (JCF), how they’re implemented, and how they’re expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes.