Data Science Made Simple: A Beginner's Journey for All PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Data Science Made Simple: A Beginner's Journey for All PDF full book. Access full book title Data Science Made Simple: A Beginner's Journey for All by M.B. Chatfield. Download full books in PDF and EPUB format.

Data Science Made Simple: A Beginner's Journey for All

Data Science Made Simple: A Beginner's Journey for All PDF Author: M.B. Chatfield
Publisher: M.B, Chatfield
ISBN:
Category : Computers
Languages : en
Pages : 106

Book Description
Unleash the power of data science to make informed decisions, solve problems, and innovate. Data science is a rapidly growing field that is changing the way we live, work, and learn. It is the process of extracting knowledge and insights from data, and it can be used to solve a wide range of problems. Data Science Made Simple is the perfect resource for anyone who wants to learn the basics of data science. This comprehensive guide covers everything you need to know, from the basics of data science to advanced topics such as machine learning and artificial intelligence. With clear explanations, this book will help you: Understand the basics of data science Choose the right data science tools and techniques for your task Collect, clean, and analyze data Build data science models Communicate your data science findings Whether you're a student, a business professional, or a data enthusiast, Data Science Made Simple is the essential resource for learning about data science. Here are some of the key topics covered in the book: Introduction to data science Data collection Data cleaning Data analysis Data modeling Data communication With Data Science Made Simple, you'll be well on your way to becoming a data science expert. If you are a beginner who wants to learn about data science, Data Science Made Simple is a great place to start.

Data Science Made Simple: A Beginner's Journey for All

Data Science Made Simple: A Beginner's Journey for All PDF Author: M.B. Chatfield
Publisher: M.B, Chatfield
ISBN:
Category : Computers
Languages : en
Pages : 106

Book Description
Unleash the power of data science to make informed decisions, solve problems, and innovate. Data science is a rapidly growing field that is changing the way we live, work, and learn. It is the process of extracting knowledge and insights from data, and it can be used to solve a wide range of problems. Data Science Made Simple is the perfect resource for anyone who wants to learn the basics of data science. This comprehensive guide covers everything you need to know, from the basics of data science to advanced topics such as machine learning and artificial intelligence. With clear explanations, this book will help you: Understand the basics of data science Choose the right data science tools and techniques for your task Collect, clean, and analyze data Build data science models Communicate your data science findings Whether you're a student, a business professional, or a data enthusiast, Data Science Made Simple is the essential resource for learning about data science. Here are some of the key topics covered in the book: Introduction to data science Data collection Data cleaning Data analysis Data modeling Data communication With Data Science Made Simple, you'll be well on your way to becoming a data science expert. If you are a beginner who wants to learn about data science, Data Science Made Simple is a great place to start.

Data Science For Dummies

Data Science For Dummies PDF Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 1119811619
Category : Computers
Languages : en
Pages : 436

Book Description
Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.

Data Science from Scratch

Data Science from Scratch PDF Author: Joel Grus
Publisher: "O'Reilly Media, Inc."
ISBN: 1491904399
Category : Computers
Languages : en
Pages : 336

Book Description
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Doing Data Science

Doing Data Science PDF Author: Cathy O'Neil
Publisher: "O'Reilly Media, Inc."
ISBN: 144936389X
Category : Computers
Languages : en
Pages : 320

Book Description
Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

The ABCs of Data Science

The ABCs of Data Science PDF Author: Raamin Mostaghimi
Publisher:
ISBN: 9781734276305
Category :
Languages : en
Pages :

Book Description
The ABCs of Data Science - By Real Data Scientists, For Future Data Scientists

Python Machine Learning for Beginners

Python Machine Learning for Beginners PDF Author: Ai Publishing
Publisher:
ISBN: 9781734790153
Category :
Languages : en
Pages : 302

Book Description
Python Machine Learning for BeginnersMachine Learning (ML) and Artificial Intelligence (AI) are here to stay. Yes, that's right. Based on a significant amount of data and evidence, it's obvious that ML and AI are here to stay.Consider any industry today. The practical applications of ML are really driving business results. Whether it's healthcare, e-commerce, government, transportation, social media sites, financial services, manufacturing, oil and gas, marketing and salesYou name it. The list goes on. There's no doubt that ML is going to play a decisive role in every domain in the future.But what does a Machine Learning professional do?A Machine Learning specialist develops intelligent algorithms that learn from data and also adapt to the data quickly. Then, these high-end algorithms make accurate predictions. Python Machine Learning for Beginners presents you with a hands-on approach to learn ML fast.How Is This Book Different?AI Publishing strongly believes in learning by doing methodology. With this in mind, we have crafted this book with care. You will find that the emphasis on the theoretical aspects of machine learning is equal to the emphasis on the practical aspects of the subject matter.You'll learn about data analysis and visualization in great detail in the first half of the book. Then, in the second half, you'll learn about machine learning and statistical models for data science.Each chapter presents you with the theoretical framework behind the different data science and machine learning techniques, and practical examples illustrate the working of these techniques.When you buy this book, your learning journey becomes so much easier. The reason is you get instant access to all the related learning material presented with this book--references, PDFs, Python codes, and exercises--on the publisher's website. All this material is available to you at no extra cost. You can download the ML datasets used in this book at runtime, or you can access them via the Resources/Datasets folder.You'll also find the short course on Python programming in the second chapter immensely useful, especially if you are new to Python. Since this book gives you access to all the Python codes and datasets, you only need access to a computer with the internet to get started. The topics covered include: Introduction and Environment Setup Python Crash Course Python NumPy Library for Data Analysis Introduction to Pandas Library for Data Analysis Data Visualization via Matplotlib, Seaborn, and Pandas Libraries Solving Regression Problems in ML Using Sklearn Library Solving Classification Problems in ML Using Sklearn Library Data Clustering with ML Using Sklearn Library Deep Learning with Python TensorFlow 2.0 Dimensionality Reduction with PCA and LDA Using Sklearn Click the BUY NOW button to start your Machine Learning journey.

Python Scikit-Learn for Beginners

Python Scikit-Learn for Beginners PDF Author: Ai Publishing
Publisher:
ISBN: 9781734790184
Category :
Languages : en
Pages : 342

Book Description
Python for Data Scientists -- Scikit-Learn SpecializationScikit-Learn, also known as Sklearn, is a free, open-source machine learning (ML) library used for the Python language. In February 2010, this library was first made public. And in less than three years, it became one of the most popular machine learning libraries on Github.Scikit-learn is the best place to start for access to easy-to-use, top-notch implementations of popular algorithms. This library speeds up the development of ML models.The main features of the Scikit-learn library are regression, classification, and clustering algorithms (random forests, K-means, gradient boosting, DBSCAN, AND support vector machines). The Scikit-learn library also integrates well with other Python libraries, such as NumPy, Pandas, IPython, SciPy, Sympy, and Matplotlib, to fulfill different tasks.Python for Data Scientists: Scikit-Learn Specialization presents you with a hands-on, simple approach to learn Scikit-learn fast.How Is This Book Different?Most Python books assume you know how to code using Pandas, NumPy, and Matplotlib. But this book does not. The author spends a lot of time teaching you how actually write the simplest codes in Python to achieve machine learning models.In-depth coverage of the Scikit-learn library starts from the third chapter itself. Jumping straight to Scikit-learn makes it easy for you to follow along. The other advantage is Jupyter Notebook is used to write and explain the code right through this book.You can access the datasets used in this book easily by downloading them at runtime. You can also access them through the Datasets folder in the SharePoint and GitHub repositories.You also get to work on three hands-on mini-projects: Spam Email Detection with Scikit-Learn IMDB Movies Sentimental Analysis Image Classification with Scikit-Learn The scripts, graphs, and images in the book are clear and provide easy-to-understand visuals to the text description. If you're new to data science, you will find this book a great option for self-study. Overall, you can count on this learning by doing book to help you accomplish your data science career goals faster.The topics covered include: Introduction to Scikit-Learn and Other Machine Learning Libraries Environment Setup and Python Crash Course Data Preprocessing with Scikit-Learn Feature Selection with Python Scikit-Learn Library Solving Regression Problems in Machine Learning Using Sklearn Library Solving Classification Problems in Machine Learning Using Sklearn Library Clustering Data with Scikit-Learn Library Dimensionality Reduction with PCA and LDA Using Sklearn Selecting Best Models with Scikit-Learn Natural Language Processing with Scikit-Learn Image Classification with Scikit-Learn Hit the BUY NOW button and start your Data Science Learning journey.

Data Science Workflow for Beginners

Data Science Workflow for Beginners PDF Author: Alejandro Garcia
Publisher: Alejandro Garcia
ISBN:
Category : Computers
Languages : en
Pages : 59

Book Description
This book brings to you a simple yet effective 40 to 60 mins introduction that will clear all your doubts about Data Sience and will answer some important questions like: What is data Science ? The book explores all the initial concepts a person might want to know about the data science workflow. There’s not coding, math or statistics required to successfully understand the goals and end results of this process. This book takes you on an exclusive tour of datasets and sites to download your first datasets. Then jumps into a comprehensive and easy-to-follow data science process letting you go through 3 data visualization projects. (Python Code Understanding is Recommended for the Data Visualization projects) - 40 to 60 mins reading time. - 3 Data Visualization projects. - 10 Datasets sources. - 26 Quality datasets for your first visualizations. - Get the code and reuse in your own projects. The ebook covers: - Intro to Data Science. - The Workflow of Data Science. - Data Science and Machine Learning. - Datasets to start right away. - Data Visualization Projects. (Python Code Understanding Recommended)

Data Science

Data Science PDF Author: C. Raju
Publisher: Penguin Random House India Private Limited
ISBN: 9357082220
Category : Computers
Languages : en
Pages : 135

Book Description
Data science is a perfect blend of 10 per cent maths, 20 per cent statistics, 30 per cent common sense and 40 per cent applied knowledge. While you can learn maths and statistics, you need to accumulate certain experience for common sense to kick in and apply what you have learnt. This introductory book on data science builds upon an individual's innate knowledge and arms you with the tools to use this interdisciplinary academic field in everyday scenarios. With straightforward real-world examples and applications, it takes you on a path that may seem daunting but is made simple through Professor Raju's easy manner. It endows you with a holistic and flawless understanding of the fundamental principles required to build a solid foundation in data science.

The Beginner's Guide to Data Science

The Beginner's Guide to Data Science PDF Author: Robert Ball
Publisher: Springer Nature
ISBN: 3031078659
Category : Computers
Languages : en
Pages : 251

Book Description
This book discusses the principles and practical applications of data science, addressing key topics including data wrangling, statistics, machine learning, data visualization, natural language processing and time series analysis. Detailed investigations of techniques used in the implementation of recommendation engines and the proper selection of metrics for distance-based analysis are also covered. Utilizing numerous comprehensive code examples, figures, and tables to help clarify and illuminate essential data science topics, the authors provide an extensive treatment and analysis of real-world questions, focusing especially on the task of determining and assessing answers to these questions as expeditiously and precisely as possible. This book addresses the challenges related to uncovering the actionable insights in “big data,” leveraging database and data collection tools such as web scraping and text identification. This book is organized as 11 chapters, structured as independent treatments of the following crucial data science topics: Data gathering and acquisition techniques including data creation Managing, transforming, and organizing data to ultimately package the information into an accessible format ready for analysis Fundamentals of descriptive statistics intended to summarize and aggregate data into a few concise but meaningful measurements Inferential statistics that allow us to infer (or generalize) trends about the larger population based only on the sample portion collected and recorded Metrics that measure some quantity such as distance, similarity, or error and which are especially useful when comparing one or more data observations Recommendation engines representing a set of algorithms designed to predict (or recommend) a particular product, service, or other item of interest a user or customer wishes to buy or utilize in some manner Machine learning implementations and associated algorithms, comprising core data science technologies with many practical applications, especially predictive analytics Natural Language Processing, which expedites the parsing and comprehension of written and spoken language in an effective and accurate manner Time series analysis, techniques to examine and generate forecasts about the progress and evolution of data over time Data science provides the methodology and tools to accurately interpret an increasing volume of incoming information in order to discern patterns, evaluate trends, and make the right decisions. The results of data science analysis provide real world answers to real world questions. Professionals working on data science and business intelligence projects as well as advanced-level students and researchers focused on data science, computer science, business and mathematics programs will benefit from this book.