Web Data Mining PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Web Data Mining PDF full book. Access full book title Web Data Mining by Bing Liu. Download full books in PDF and EPUB format.

Web Data Mining

Web Data Mining PDF Author: Bing Liu
Publisher: Springer Science & Business Media
ISBN: 3642194605
Category : Computers
Languages : en
Pages : 637

Book Description
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Web Data Mining

Web Data Mining PDF Author: Bing Liu
Publisher: Springer Science & Business Media
ISBN: 3642194605
Category : Computers
Languages : en
Pages : 637

Book Description
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Mining the Web

Mining the Web PDF Author: Soumen Chakrabarti
Publisher: Morgan Kaufmann
ISBN: 1558607544
Category : Computers
Languages : en
Pages : 366

Book Description
The definitive book on mining the Web from the preeminent authority.

Data Mining the Web

Data Mining the Web PDF Author: Zdravko Markov
Publisher: John Wiley & Sons
ISBN: 0470108088
Category : Computers
Languages : en
Pages : 236

Book Description
This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).

Web Data Mining and Applications in Business Intelligence and Counter-Terrorism

Web Data Mining and Applications in Business Intelligence and Counter-Terrorism PDF Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 0203499514
Category : Business & Economics
Languages : en
Pages : 542

Book Description
The explosion of Web-based data has created a demand among executives and technologists for methods to identify, gather, analyze, and utilize data that may be of value to corporations and organizations. The emergence of data mining, and the larger field of Web mining, has businesses lost within a confusing maze of mechanisms and strategies for obta

Mining the World Wide Web

Mining the World Wide Web PDF Author: George Chang
Publisher: Springer Science & Business Media
ISBN: 9780792373490
Category : Computers
Languages : en
Pages : 192

Book Description
Mining the World Wide Web: An Information Search Approach explores the concepts and techniques of Web mining, a promising and rapidly growing field of computer science research. Web mining is a multidisciplinary field, drawing on such areas as artificial intelligence, databases, data mining, data warehousing, data visualization, information retrieval, machine learning, markup languages, pattern recognition, statistics, and Web technology. Mining the World Wide Web presents the Web mining material from an information search perspective, focusing on issues relating to the efficiency, feasibility, scalability and usability of searching techniques for Web mining. Mining the World Wide Web is designed for researchers and developers of Web information systems and also serves as an excellent supplemental reference to advanced level courses in data mining, databases and information retrieval.

Mining the Social Web

Mining the Social Web PDF Author: Matthew Russell
Publisher: "O'Reilly Media, Inc."
ISBN: 1449388345
Category : Computers
Languages : en
Pages : 356

Book Description
Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

Dark Web

Dark Web PDF Author: Hsinchun Chen
Publisher: Springer Science & Business Media
ISBN: 146141556X
Category : Computers
Languages : en
Pages : 460

Book Description
The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace. This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches. It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.

Mining of Massive Datasets

Mining of Massive Datasets PDF Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480

Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Mining Social Media

Mining Social Media PDF Author: Lam Thuy Vo
Publisher: No Starch Press
ISBN: 1593279167
Category : Computers
Languages : en
Pages : 210

Book Description
BuzzFeed News Senior Reporter Lam Thuy Vo explains how to mine, process, and analyze data from the social web in meaningful ways with the Python programming language. Did fake Twitter accounts help sway a presidential election? What can Facebook and Reddit archives tell us about human behavior? In Mining Social Media, senior BuzzFeed reporter Lam Thuy Vo shows you how to use Python and key data analysis tools to find the stories buried in social media. Whether you're a professional journalist, an academic researcher, or a citizen investigator, you'll learn how to use technical tools to collect and analyze data from social media sources to build compelling, data-driven stories. Learn how to: Write Python scripts and use APIs to gather data from the social web Download data archives and dig through them for insights Inspect HTML downloaded from websites for useful content Format, aggregate, sort, and filter your collected data using Google Sheets Create data visualizations to illustrate your discoveries Perform advanced data analysis using Python, Jupyter Notebooks, and the pandas library Apply what you've learned to research topics on your own Social media is filled with thousands of hidden stories just waiting to be told. Learn to use the data-sleuthing tools that professionals use to write your own data-driven stories.

Exploiting Semantic Web Knowledge Graphs in Data Mining

Exploiting Semantic Web Knowledge Graphs in Data Mining PDF Author: P. Ristoski
Publisher: IOS Press
ISBN: 1614999813
Category : Computers
Languages : en
Pages : 246

Book Description
Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.