Proceedings of the Fourth SIAM International Conference on Data Mining PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Proceedings of the Fourth SIAM International Conference on Data Mining PDF full book. Access full book title Proceedings of the Fourth SIAM International Conference on Data Mining by Michael W. Berry. Download full books in PDF and EPUB format.

Proceedings of the Fourth SIAM International Conference on Data Mining

Proceedings of the Fourth SIAM International Conference on Data Mining PDF Author: Michael W. Berry
Publisher: SIAM
ISBN: 9780898715682
Category : Mathematics
Languages : en
Pages : 556

Book Description
The Fourth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. This is reflected in the talks by the four keynote speakers who discuss data usability issues in systems for data mining in science and engineering, issues raised by new technologies that generate biological data, ways to find complex structured patterns in linked data, and advances in Bayesian inference techniques. This proceedings includes 61 research papers.

Proceedings of the Fourth SIAM International Conference on Data Mining

Proceedings of the Fourth SIAM International Conference on Data Mining PDF Author: Michael W. Berry
Publisher: SIAM
ISBN: 9780898715682
Category : Mathematics
Languages : en
Pages : 556

Book Description
The Fourth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. This is reflected in the talks by the four keynote speakers who discuss data usability issues in systems for data mining in science and engineering, issues raised by new technologies that generate biological data, ways to find complex structured patterns in linked data, and advances in Bayesian inference techniques. This proceedings includes 61 research papers.

Data Mining and Data Visualization

Data Mining and Data Visualization PDF Author:
Publisher: Elsevier
ISBN: 0080459404
Category : Mathematics
Languages : en
Pages : 660

Book Description
Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights

Formal Concept Analysis

Formal Concept Analysis PDF Author: Bernhard Ganter
Publisher: Springer
ISBN: 354031881X
Category : Computers
Languages : en
Pages : 359

Book Description
Formal concept analysis has been developed as a field of applied mathematics based on the mathematization of concept and concept hierarchy. It thereby allows us to mathematically represent, analyze, and construct conceptual structures. The formal concept analysis approach has been proven successful in a wide range of application fields. This book constitutes a comprehensive and systematic presentation of the state of the art of formal concept analysis and its applications. The first part of the book is devoted to foundational and methodological topics. The contributions in the second part demonstrate how formal concept analysis is successfully used outside of mathematics, in linguistics, text retrieval, association rule mining, data analysis, and economics. The third part presents applications in software engineering.

Data Warehousing and Knowledge Discovery

Data Warehousing and Knowledge Discovery PDF Author: A Min Tjoa
Publisher: Springer Science & Business Media
ISBN: 3540377360
Category : Business & Economics
Languages : en
Pages : 592

Book Description
This book constitutes the refereed proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2006, held in conjunction with DEXA 2006. The book presents 53 revised full papers, organized in topical sections on ETL processing, materialized view, multidimensional design, OLAP and multidimensional model, cubes processing, data warehouse applications, mining techniques, frequent itemsets, mining data streams, ontology-based mining, clustering, advanced mining techniques, association rules, miscellaneous applications, and classification.

Feature Engineering for Machine Learning and Data Analytics

Feature Engineering for Machine Learning and Data Analytics PDF Author: Guozhu Dong
Publisher: CRC Press
ISBN: 1351721267
Category : Business & Economics
Languages : en
Pages : 366

Book Description
Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Data Mining Patterns: New Methods and Applications

Data Mining Patterns: New Methods and Applications PDF Author: Poncelet, Pascal
Publisher: IGI Global
ISBN: 1599041642
Category : Computers
Languages : en
Pages : 324

Book Description
"This book provides an overall view of recent solutions for mining, and explores new patterns,offering theoretical frameworks and presenting challenges and possible solutions concerning pattern extractions, emphasizing research techniques and real-world applications. It portrays research applications in data models, methodologies for mining patterns, multi-relational and multidimensional pattern mining, fuzzy data mining, data streaming and incremental mining"--Provided by publisher.

Pattern Recognition in Computational Molecular Biology

Pattern Recognition in Computational Molecular Biology PDF Author: Mourad Elloumi
Publisher: John Wiley & Sons
ISBN: 1118893689
Category : Technology & Engineering
Languages : en
Pages : 654

Book Description
A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. Surveys the development of techniques and approaches on pattern recognition in biomolecular data Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.

Cyber Security, Cryptology, and Machine Learning

Cyber Security, Cryptology, and Machine Learning PDF Author: Shlomi Dolev
Publisher: Springer Nature
ISBN: 3031346718
Category : Computers
Languages : en
Pages : 539

Book Description
This book constitutes the refereed proceedings of the 7th International Symposium on Cyber Security, Cryptology, and Machine Learning, CSCML 2023, held in Be'er Sheva, Israel, in June 2023. The 21 full and 15 short papers were carefully reviewed and selected from 70 submissions. They deal with the theory, design, analysis, implementation, and application of cyber security, cryptography and machine learning systems and networks, and conceptually innovative topics in these research areas.

Practical Graph Mining with R

Practical Graph Mining with R PDF Author: Nagiza F. Samatova
Publisher: CRC Press
ISBN: 143986084X
Category : Business & Economics
Languages : en
Pages : 498

Book Description
Discover Novel and Insightful Knowledge from Data Represented as a Graph Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique. Makes Graph Mining Accessible to Various Levels of Expertise Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.

Database Systems for Advanced Applications

Database Systems for Advanced Applications PDF Author: Kian Lee Tan
Publisher: Springer
ISBN: 354033338X
Category : Computers
Languages : en
Pages : 940

Book Description
This book constitutes the refereed proceedings of the 11th International Conference on Database Systems for Advanced Applications, DASFAA 2006, held in Singapore in April 2006. 46 revised full papers and 16 revised short papers presented were carefully reviewed and selected from 188 submissions. Topics include sensor networks, subsequence matching and repeating patterns, spatial-temporal databases, data mining, XML compression and indexing, xpath query evaluation, uncertainty and streams, peer-to-peer and distributed networks and more.