Author: Bracha Laufer-Goldshtein
Publisher:
ISBN: 9781680837360
Category :
Languages : en
Pages : 178
Book Description
Acoustic source localization is an essential component in many modern day audio applications. For example, smart speakers require localization capabilities in order to determine the speakers in the scene and their role. Based on the location information, they can enhance a speaker or carry out location specific tasks, such as switching the lights on and off, steering a camera, etc. Localization has often been based on creating physical models which become extremely intricate in real-world applications. Recently, researchers have started using learning techniques to address localization problems. This monograph introduces the reader to the research and practical aspects behind the approach of learning the characteristics of the acoustic environment directly from the data rather than using a predefined physical model. Written by the experts in the field who have developed many of these techniques, it provides a comprehensive overview and insights into this burgeoning area of acoustic developments. The reader is introduced to the underlying mathematics before being introduced to the localization problem in depth. The core paradigm of using manifolds for diffusion mapping and distance is then described. Building on these concepts, the authors address both single and multiple manifold localization. Finally, manifold-based tracking is covered. Data-Driven Multi-Microphone Speaker Localization on Manifolds is an illuminating introduction to designing and building acoustic systems where localization of multi-microphone and speakers forms an essential part of the system.
Data-Driven Multi-Microphone Speaker Localization on Manifolds
Author: Bracha Laufer-Goldshtein
Publisher:
ISBN: 9781680837360
Category :
Languages : en
Pages : 178
Book Description
Acoustic source localization is an essential component in many modern day audio applications. For example, smart speakers require localization capabilities in order to determine the speakers in the scene and their role. Based on the location information, they can enhance a speaker or carry out location specific tasks, such as switching the lights on and off, steering a camera, etc. Localization has often been based on creating physical models which become extremely intricate in real-world applications. Recently, researchers have started using learning techniques to address localization problems. This monograph introduces the reader to the research and practical aspects behind the approach of learning the characteristics of the acoustic environment directly from the data rather than using a predefined physical model. Written by the experts in the field who have developed many of these techniques, it provides a comprehensive overview and insights into this burgeoning area of acoustic developments. The reader is introduced to the underlying mathematics before being introduced to the localization problem in depth. The core paradigm of using manifolds for diffusion mapping and distance is then described. Building on these concepts, the authors address both single and multiple manifold localization. Finally, manifold-based tracking is covered. Data-Driven Multi-Microphone Speaker Localization on Manifolds is an illuminating introduction to designing and building acoustic systems where localization of multi-microphone and speakers forms an essential part of the system.
Publisher:
ISBN: 9781680837360
Category :
Languages : en
Pages : 178
Book Description
Acoustic source localization is an essential component in many modern day audio applications. For example, smart speakers require localization capabilities in order to determine the speakers in the scene and their role. Based on the location information, they can enhance a speaker or carry out location specific tasks, such as switching the lights on and off, steering a camera, etc. Localization has often been based on creating physical models which become extremely intricate in real-world applications. Recently, researchers have started using learning techniques to address localization problems. This monograph introduces the reader to the research and practical aspects behind the approach of learning the characteristics of the acoustic environment directly from the data rather than using a predefined physical model. Written by the experts in the field who have developed many of these techniques, it provides a comprehensive overview and insights into this burgeoning area of acoustic developments. The reader is introduced to the underlying mathematics before being introduced to the localization problem in depth. The core paradigm of using manifolds for diffusion mapping and distance is then described. Building on these concepts, the authors address both single and multiple manifold localization. Finally, manifold-based tracking is covered. Data-Driven Multi-Microphone Speaker Localization on Manifolds is an illuminating introduction to designing and building acoustic systems where localization of multi-microphone and speakers forms an essential part of the system.
Audio Source Separation
Author: Shoji Makino
Publisher: Springer
ISBN: 3319730312
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods. The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.
Publisher: Springer
ISBN: 3319730312
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods. The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.
Acoustic Array Systems
Author: Mingsian R. Bai
Publisher: John Wiley & Sons
ISBN: 0470828374
Category : Science
Languages : en
Pages : 546
Book Description
Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applications: vehicles, computing and communications equipment, compressors, fans, and household appliances, and hands-free speech. The author concludes with other emerging techniques and innovative algorithms. Encompasses theoretical background, implementation considerations and application know-how Shows how to tackle broader problems in signal processing, control, and transudcers Covers both farfield and nearfield techniques in a balanced way Introduces innovative algorithms including equivalent source imaging (NESI) and high-resolution nearfield arrays Selected code examples available for download for readers to practice on their own Presentation slides available for instructor use A valuable resource for Postgraduates and researchers in acoustics, noise control engineering, audio engineering, and signal processing.
Publisher: John Wiley & Sons
ISBN: 0470828374
Category : Science
Languages : en
Pages : 546
Book Description
Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applications: vehicles, computing and communications equipment, compressors, fans, and household appliances, and hands-free speech. The author concludes with other emerging techniques and innovative algorithms. Encompasses theoretical background, implementation considerations and application know-how Shows how to tackle broader problems in signal processing, control, and transudcers Covers both farfield and nearfield techniques in a balanced way Introduces innovative algorithms including equivalent source imaging (NESI) and high-resolution nearfield arrays Selected code examples available for download for readers to practice on their own Presentation slides available for instructor use A valuable resource for Postgraduates and researchers in acoustics, noise control engineering, audio engineering, and signal processing.
Speech Dereverberation
Author: Patrick A. Naylor
Publisher: Springer Science & Business Media
ISBN: 1849960569
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
Speech Dereverberation gathers together an overview, a mathematical formulation of the problem and the state-of-the-art solutions for dereverberation. Speech Dereverberation presents current approaches to the problem of reverberation. It provides a review of topics in room acoustics and also describes performance measures for dereverberation. The algorithms are then explained with mathematical analysis and examples that enable the reader to see the strengths and weaknesses of the various techniques, as well as giving an understanding of the questions still to be addressed. Techniques rooted in speech enhancement are included, in addition to a treatment of multichannel blind acoustic system identification and inversion. The TRINICON framework is shown in the context of dereverberation to be a generalization of the signal processing for a range of analysis and enhancement techniques. Speech Dereverberation is suitable for students at masters and doctoral level, as well as established researchers.
Publisher: Springer Science & Business Media
ISBN: 1849960569
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
Speech Dereverberation gathers together an overview, a mathematical formulation of the problem and the state-of-the-art solutions for dereverberation. Speech Dereverberation presents current approaches to the problem of reverberation. It provides a review of topics in room acoustics and also describes performance measures for dereverberation. The algorithms are then explained with mathematical analysis and examples that enable the reader to see the strengths and weaknesses of the various techniques, as well as giving an understanding of the questions still to be addressed. Techniques rooted in speech enhancement are included, in addition to a treatment of multichannel blind acoustic system identification and inversion. The TRINICON framework is shown in the context of dereverberation to be a generalization of the signal processing for a range of analysis and enhancement techniques. Speech Dereverberation is suitable for students at masters and doctoral level, as well as established researchers.
Advances in Neural Information Processing Systems 16
Author: Sebastian Thrun
Publisher: MIT Press
ISBN: 9780262201520
Category : Computers
Languages : en
Pages : 1694
Book Description
Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.
Publisher: MIT Press
ISBN: 9780262201520
Category : Computers
Languages : en
Pages : 1694
Book Description
Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.
Machine Learning for Audio, Image and Video Analysis
Author: Francesco Camastra
Publisher: Springer
ISBN: 144716735X
Category : Computers
Languages : en
Pages : 564
Book Description
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
Publisher: Springer
ISBN: 144716735X
Category : Computers
Languages : en
Pages : 564
Book Description
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
Speech Enhancement
Author: Shoji Makino
Publisher: Springer Science & Business Media
ISBN: 9783540240396
Category : Hearing
Languages : en
Pages : 432
Book Description
We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field. TOC:Introduction.- Study of the Wiener Filter for Noise Reduction.- Statistical Methods for the Enhancement of Noisy Speech.- Single- und Multi-Microphone Spectral Amplitude Estimation Using a Super-Gaussian Speech Model.- From Volatility Modeling of Financial Time-Series to Stochastic Modeling and Enhancement of Speech Signals.- Single-Microphone Noise Suppression for 3G Handsets Based on Weighted Noise Estimation.- Signal Subspace Techniques for Speech Enhancement.- Speech Enhancement: Application of the Kalman Filter in the Estimate-Maximize (EM) Framework.- Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.- Adpative Microphone Arrays Employing Spatial Quadratic Soft Constraints and Spectral Shaping.- Single-Microphone Blind Dereverberation.- Separation and Dereverberation of Speech Signals with Multiple Microphones.- Frequency-Domain Blind Source Separation.- Subband Based Blind Source Separation.- Real-Time Blind Source Separation for Moving Speech Signals.- Separation of Speech by Computational Auditory Scene Analysis
Publisher: Springer Science & Business Media
ISBN: 9783540240396
Category : Hearing
Languages : en
Pages : 432
Book Description
We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field. TOC:Introduction.- Study of the Wiener Filter for Noise Reduction.- Statistical Methods for the Enhancement of Noisy Speech.- Single- und Multi-Microphone Spectral Amplitude Estimation Using a Super-Gaussian Speech Model.- From Volatility Modeling of Financial Time-Series to Stochastic Modeling and Enhancement of Speech Signals.- Single-Microphone Noise Suppression for 3G Handsets Based on Weighted Noise Estimation.- Signal Subspace Techniques for Speech Enhancement.- Speech Enhancement: Application of the Kalman Filter in the Estimate-Maximize (EM) Framework.- Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.- Adpative Microphone Arrays Employing Spatial Quadratic Soft Constraints and Spectral Shaping.- Single-Microphone Blind Dereverberation.- Separation and Dereverberation of Speech Signals with Multiple Microphones.- Frequency-Domain Blind Source Separation.- Subband Based Blind Source Separation.- Real-Time Blind Source Separation for Moving Speech Signals.- Separation of Speech by Computational Auditory Scene Analysis
Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Proceedings of the Scientific-Practical Conference "Research and Development - 2016"
Author: K. V. Anisimov
Publisher: Springer
ISBN: 3319628704
Category : Technology & Engineering
Languages : en
Pages : 715
Book Description
This open access book relates to the III Annual Conference hosted by The Ministry of Education and Science of the Russian Federation in December 2016. This event has summarized, analyzed and discussed the interim results, academic outputs and scientific achievements of the Russian Federal Targeted Programme “Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020.” It contains 75 selected papers from 6 areas considered priority by the Federal Targeted Programme: computer science, ecology & environment sciences; energy and energy efficiency; lifesciences; nanoscience & nanotechnology and transport & communications. The chapters report the results of the 3-years research projects supported by the Programme and finalized in 2016.
Publisher: Springer
ISBN: 3319628704
Category : Technology & Engineering
Languages : en
Pages : 715
Book Description
This open access book relates to the III Annual Conference hosted by The Ministry of Education and Science of the Russian Federation in December 2016. This event has summarized, analyzed and discussed the interim results, academic outputs and scientific achievements of the Russian Federal Targeted Programme “Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020.” It contains 75 selected papers from 6 areas considered priority by the Federal Targeted Programme: computer science, ecology & environment sciences; energy and energy efficiency; lifesciences; nanoscience & nanotechnology and transport & communications. The chapters report the results of the 3-years research projects supported by the Programme and finalized in 2016.
Machine Audition: Principles, Algorithms and Systems
Author: Wang, Wenwu
Publisher: IGI Global
ISBN: 1615209204
Category : Computers
Languages : en
Pages : 554
Book Description
Machine audition is the study of algorithms and systems for the automatic analysis and understanding of sound by machine. It has recently attracted increasing interest within several research communities, such as signal processing, machine learning, auditory modeling, perception and cognition, psychology, pattern recognition, and artificial intelligence. However, the developments made so far are fragmented within these disciplines, lacking connections and incurring potentially overlapping research activities in this subject area. Machine Audition: Principles, Algorithms and Systems contains advances in algorithmic developments, theoretical frameworks, and experimental research findings. This book is useful for professionals who want an improved understanding about how to design algorithms for performing automatic analysis of audio signals, construct a computing system for understanding sound, and learn how to build advanced human-computer interactive systems.
Publisher: IGI Global
ISBN: 1615209204
Category : Computers
Languages : en
Pages : 554
Book Description
Machine audition is the study of algorithms and systems for the automatic analysis and understanding of sound by machine. It has recently attracted increasing interest within several research communities, such as signal processing, machine learning, auditory modeling, perception and cognition, psychology, pattern recognition, and artificial intelligence. However, the developments made so far are fragmented within these disciplines, lacking connections and incurring potentially overlapping research activities in this subject area. Machine Audition: Principles, Algorithms and Systems contains advances in algorithmic developments, theoretical frameworks, and experimental research findings. This book is useful for professionals who want an improved understanding about how to design algorithms for performing automatic analysis of audio signals, construct a computing system for understanding sound, and learn how to build advanced human-computer interactive systems.