Data Analysis with Open Source Tools PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Data Analysis with Open Source Tools PDF full book. Access full book title Data Analysis with Open Source Tools by Philipp K. Janert. Download full books in PDF and EPUB format.

Data Analysis with Open Source Tools

Data Analysis with Open Source Tools PDF Author: Philipp K. Janert
Publisher: "O'Reilly Media, Inc."
ISBN: 1449396658
Category : Computers
Languages : en
Pages : 534

Book Description
Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora

Data Analysis with Open Source Tools

Data Analysis with Open Source Tools PDF Author: Philipp K. Janert
Publisher: "O'Reilly Media, Inc."
ISBN: 1449396658
Category : Computers
Languages : en
Pages : 534

Book Description
Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora

Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities

Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities PDF Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1799827704
Category : Computers
Languages : en
Pages : 237

Book Description
With the development of computing technologies in today’s modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.

Data Analytics Using Open-Source Tools

Data Analytics Using Open-Source Tools PDF Author: Jeffrey Strickland
Publisher: Lulu.com
ISBN: 1365270416
Category : Business & Economics
Languages : en
Pages : 708

Book Description
This book is about using open-source tools in data analytics. The book covers several subjects, including descriptive and predictive modeling, gradient boosting, cluster modeling, logistic regression, and artificial neural networks, among other topics.

Guidelines for Preparing Patent Landscape Reports

Guidelines for Preparing Patent Landscape Reports PDF Author: World Intellectual Property Organization
Publisher: WIPO
ISBN: 9280525298
Category : Law
Languages : en
Pages : 131

Book Description
These Guidelines are designed both for general users of patent information, as well as for those involved in producing Patent Landscape Reports (PLRs). They provide step-by-step instructions on how to prepare a PLR, as well as background information such as objectives, patent analytics, concepts and frameworks.

Practical Data Analysis

Practical Data Analysis PDF Author: Dhiraj Bhuyan
Publisher: Dhiraj Bhuyan
ISBN:
Category : Computers
Languages : en
Pages : 331

Book Description
“Practical Data Analysis – Using Python & Open Source Technology” uses a case-study based approach to explore some of the real-world applications of open source data analysis tools and techniques. Specifically, the following topics are covered in this book: 1. Open Source Data Analysis Tools and Techniques. 2. A Beginner’s Guide to “Python” for Data Analysis. 3. Implementing Custom Search Engines On The Fly. 4. Visualising Missing Data. 5. Sentiment Analysis and Named Entity Recognition. 6. Automatic Document Classification, Clustering and Summarisation. 7. Fraud Detection Using Machine Learning Techniques. 8. Forecasting - Using Data to Map the Future. 9. Continuous Monitoring and Real-Time Analytics. 10. Creating a Robot for Interacting with Web Applications. Free samples of the book is available at - http://timesofdatascience.com

Data Analytics in Marketing, Entrepreneurship, and Innovation

Data Analytics in Marketing, Entrepreneurship, and Innovation PDF Author: Mounir Kehal
Publisher: CRC Press
ISBN: 0429591683
Category : Business & Economics
Languages : en
Pages : 193

Book Description
Innovation based in data analytics is a contemporary approach to developing empirically supported advances that encourage entrepreneurial activity inspired by novel marketing inferences. Data Analytics in Marketing, Entrepreneurship, and Innovation covers techniques, processes, models, tools, and practices for creating business opportunities through data analytics. It features case studies that provide realistic examples of applications. This multifaceted examination of data analytics looks at: Business analytics Applying predictive analytics Using discrete choice analysis for decision-making Marketing and customer analytics Developing new products Technopreneurship Disruptive versus incremental innovation The book gives researchers and practitioners insight into how data analytics is used in the areas of innovation, entrepreneurship, and marketing. Innovation analytics helps identify opportunities to develop new products and services, and improve existing methods of product manufacturing and service delivery. Entrepreneurial analytics facilitates the transformation of innovative ideas into strategy and helps entrepreneurs make critical decisions based on data-driven techniques. Marketing analytics is used in collecting, managing, assessing, and analyzing marketing data to predict trends, investigate customer preferences, and launch campaigns.

R for Data Science

R for Data Science PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521

Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

IoT Data Analytics using Python

IoT Data Analytics using Python PDF Author: M S Hariharan
Publisher: BPB Publications
ISBN: 9355515758
Category : Computers
Languages : en
Pages : 303

Book Description
Harness the power of Python to analyze your IoT data KEY FEATURES ● Learn how to build an IoT Data Analytics infrastructure. ● Explore advanced techniques for IoT Data Analysis with Python. ● Gain hands-on experience applying IoT Data Analytics to real-world situations. DESCRIPTION Python is a popular programming language for data analytics, and it is also well-suited for IoT Data Analytics. By leveraging Python's versatility and its rich ecosystem of libraries and tools, Data Analytics for IoT can unlock valuable insights, enable predictive capabilities, and optimize decision-making in various IoT applications and domains. The book begins with a foundation in IoT fundamentals, its role in digital transformation, and why Python is the preferred language for IoT Data Analytics. It then covers essential data analytics concepts, how to establish an IoT Data Analytics environment, and how to design and manage real-time IoT data flows. Next, the book discusses how to implement Descriptive Analytics with Pandas, Time Series Forecasting with Python libraries, and Monitoring, Preventive Maintenance, Optimization, Text Mining, and Automation strategies. It also introduces Edge Computing and Analytics, discusses Continuous and Adaptive Learning concepts, and explores data flow and use cases for Edge Analytics. Finally, the book concludes with a chapter on IoT Data Analytics for self-driving cars, using the CRISP-DM framework for data collection, modeling, and deployment. By the end of the book, you will be equipped with the skills and knowledge needed to extract valuable insights from IoT data and build real-world applications. WHAT YOU WILL LEARN ● Explore the essentials of IoT Data Analytics and the Industry 4.0 revolution. ● Learn how to set up the IoT Data Analytics environment. ● Equip Python developers with data analysis foundations. ● Learn to build data lakes for real-time IoT data streaming. ● Learn to deploy machine learning models on edge devices. ● Understand Edge Computing with MicroPython for efficient IoT Data Analytics. WHO THIS BOOK IS FOR If you are an experienced Python developer who wants to master IoT Data Analytics, or a newcomer who wants to learn Python and its applications in IoT, this book will give you a thorough understanding of IoT Data Analytics and practical skills for real-world use cases. TABLE OF CONTENTS 1. Necessity of Analytics Across IoT 2. Up and Running with Data Analytics Fundamentals 3. Setting Up IoT Analytics Environment 4. Managing Data Pipeline and Cleaning 5. Designing Data Lake and Executing Data Transformation 6. Implementing Descriptive Analytics Using Pandas 7. Time Series Forecasting and Predictions 8. Monitoring and Preventive Maintenance 9. Model Deployment on Edge Devices 10. Understanding Edge Computing with MicroPython 11. IoT Analytics for Self-driving Vehicles

Data Science Applications using R

Data Science Applications using R PDF Author: Jeffrey Strickland
Publisher: Lulu.com
ISBN: 035981042X
Category : Business & Economics
Languages : en
Pages : 434

Book Description
To write a single book about data science, at least as I view the discipline, would result in several volumes. I have come to view Data Science as a multidisciplinary field. People who engage in data science may be statisticians, economists, mathematicians, operations research analysts, and a myriad of other scientific professionals. Most would agree that data scientist have advance degrees in one or more of these disciplines. All practitioners would agree that Data is at center stage. This book is intended to demonstrate the multidisciplinary application of data science, using R-programming with R Studio.

Big Data Analytics

Big Data Analytics PDF Author: Arun K. Somani
Publisher: CRC Press
ISBN: 1315391244
Category : Computers
Languages : en
Pages : 484

Book Description
The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers.