Author: Steven M Boker
Publisher: Psychology Press
ISBN: 113561153X
Category : Medical
Languages : en
Pages : 259
Book Description
Each volume in the Notre Dame Series on Quantitative Methodology features leading methodologists and substantive experts who provide instruction on innovative techniques designed to enhance quantitative skills in a substantive area. This latest volume focuses on the methodological issues and analyses pertinent to understanding psychological data from a dynamical system perspective. Dynamical systems analysis (DSA) is increasingly used to demonstrate time-dependent variable change. It is used more and more to analyze a variety of psychological phenomena such as relationships, development and aging, emotional regulation, and perceptual processes. The book opens with the best occasions for using DSA methods. The final two chapters focus on the application of dynamical systems methods to problems in psychology such as substance use and gestural dynamics. In addition, it reviews how and when to use: time series models from a discrete time perspective stochastic differential equations in continuous time estimating continuous time differential equation models multilevel models of differential equations to estimate within-person dynamics and the corresponding population means new SEM models for dynamical systems data Data Analytic Techniques for Dynamical Systems is beneficial to advanced students and researchers in the areas of developmental psychology, family studies, language processes, cognitive neuroscience, social and personality psychology, medicine, and emotion. Due to the book’s instructive nature, it serves as an excellent text for advanced courses on this particular technique.
Dynamic Data Analysis
Author: James Ramsay
Publisher: Springer
ISBN: 1493971905
Category : Mathematics
Languages : en
Pages : 242
Book Description
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.
Publisher: Springer
ISBN: 1493971905
Category : Mathematics
Languages : en
Pages : 242
Book Description
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.
Data Analytic Techniques for Dynamical Systems
Author: Steven M Boker
Publisher: Psychology Press
ISBN: 113561153X
Category : Medical
Languages : en
Pages : 259
Book Description
Each volume in the Notre Dame Series on Quantitative Methodology features leading methodologists and substantive experts who provide instruction on innovative techniques designed to enhance quantitative skills in a substantive area. This latest volume focuses on the methodological issues and analyses pertinent to understanding psychological data from a dynamical system perspective. Dynamical systems analysis (DSA) is increasingly used to demonstrate time-dependent variable change. It is used more and more to analyze a variety of psychological phenomena such as relationships, development and aging, emotional regulation, and perceptual processes. The book opens with the best occasions for using DSA methods. The final two chapters focus on the application of dynamical systems methods to problems in psychology such as substance use and gestural dynamics. In addition, it reviews how and when to use: time series models from a discrete time perspective stochastic differential equations in continuous time estimating continuous time differential equation models multilevel models of differential equations to estimate within-person dynamics and the corresponding population means new SEM models for dynamical systems data Data Analytic Techniques for Dynamical Systems is beneficial to advanced students and researchers in the areas of developmental psychology, family studies, language processes, cognitive neuroscience, social and personality psychology, medicine, and emotion. Due to the book’s instructive nature, it serves as an excellent text for advanced courses on this particular technique.
Publisher: Psychology Press
ISBN: 113561153X
Category : Medical
Languages : en
Pages : 259
Book Description
Each volume in the Notre Dame Series on Quantitative Methodology features leading methodologists and substantive experts who provide instruction on innovative techniques designed to enhance quantitative skills in a substantive area. This latest volume focuses on the methodological issues and analyses pertinent to understanding psychological data from a dynamical system perspective. Dynamical systems analysis (DSA) is increasingly used to demonstrate time-dependent variable change. It is used more and more to analyze a variety of psychological phenomena such as relationships, development and aging, emotional regulation, and perceptual processes. The book opens with the best occasions for using DSA methods. The final two chapters focus on the application of dynamical systems methods to problems in psychology such as substance use and gestural dynamics. In addition, it reviews how and when to use: time series models from a discrete time perspective stochastic differential equations in continuous time estimating continuous time differential equation models multilevel models of differential equations to estimate within-person dynamics and the corresponding population means new SEM models for dynamical systems data Data Analytic Techniques for Dynamical Systems is beneficial to advanced students and researchers in the areas of developmental psychology, family studies, language processes, cognitive neuroscience, social and personality psychology, medicine, and emotion. Due to the book’s instructive nature, it serves as an excellent text for advanced courses on this particular technique.
Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data
Author: Stephen J. Guastello
Publisher: CRC Press
ISBN: 1439820023
Category : Mathematics
Languages : en
Pages : 616
Book Description
Although its roots can be traced to the 19th century, progress in the study of nonlinear dynamical systems has taken off in the last 30 years. While pertinent source material exists, it is strewn about the literature in mathematics, physics, biology, economics, and psychology at varying levels of accessibility. A compendium research methods reflect
Publisher: CRC Press
ISBN: 1439820023
Category : Mathematics
Languages : en
Pages : 616
Book Description
Although its roots can be traced to the 19th century, progress in the study of nonlinear dynamical systems has taken off in the last 30 years. While pertinent source material exists, it is strewn about the literature in mathematics, physics, biology, economics, and psychology at varying levels of accessibility. A compendium research methods reflect
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems
Author: M. Reza Rahimi Tabar
Publisher: Springer
ISBN: 3030184722
Category : Science
Languages : en
Pages : 290
Book Description
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Publisher: Springer
ISBN: 3030184722
Category : Science
Languages : en
Pages : 290
Book Description
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Stochastic Dynamical Systems
Author: Josef Honerkamp
Publisher: John Wiley & Sons
ISBN: 9780471188346
Category : Mathematics
Languages : de
Pages : 558
Book Description
This unique volume introduces the reader to the mathematical language for complex systems and is ideal for students who are starting out in the study of stochastical dynamical systems. Unlike other books in the field it covers a broad array of stochastic and statistical methods.
Publisher: John Wiley & Sons
ISBN: 9780471188346
Category : Mathematics
Languages : de
Pages : 558
Book Description
This unique volume introduces the reader to the mathematical language for complex systems and is ideal for students who are starting out in the study of stochastical dynamical systems. Unlike other books in the field it covers a broad array of stochastic and statistical methods.
Analytical Methods for Dynamic Modelers
Author: Hazhir Rahmandad
Publisher: MIT Press
ISBN: 0262331438
Category : Business & Economics
Languages : en
Pages : 443
Book Description
A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel
Publisher: MIT Press
ISBN: 0262331438
Category : Business & Economics
Languages : en
Pages : 443
Book Description
A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel
Data Analytic Techniques for Dynamical Systems
Author: Steven M Boker
Publisher: Psychology Press
ISBN: 1135611548
Category : Medical
Languages : en
Pages : 293
Book Description
Each volume in the Notre Dame Series on Quantitative Methodology features leading methodologists and substantive experts who provide instruction on innovative techniques designed to enhance quantitative skills in a substantive area. This latest volume focuses on the methodological issues and analyses pertinent to understanding psychological data from a dynamical system perspective. Dynamical systems analysis (DSA) is increasingly used to demonstrate time-dependent variable change. It is used more and more to analyze a variety of psychological phenomena such as relationships, development and aging, emotional regulation, and perceptual processes. The book opens with the best occasions for using DSA methods. The final two chapters focus on the application of dynamical systems methods to problems in psychology such as substance use and gestural dynamics. In addition, it reviews how and when to use: time series models from a discrete time perspective stochastic differential equations in continuous time estimating continuous time differential equation models multilevel models of differential equations to estimate within-person dynamics and the corresponding population means new SEM models for dynamical systems data Data Analytic Techniques for Dynamical Systems is beneficial to advanced students and researchers in the areas of developmental psychology, family studies, language processes, cognitive neuroscience, social and personality psychology, medicine, and emotion. Due to the book’s instructive nature, it serves as an excellent text for advanced courses on this particular technique.
Publisher: Psychology Press
ISBN: 1135611548
Category : Medical
Languages : en
Pages : 293
Book Description
Each volume in the Notre Dame Series on Quantitative Methodology features leading methodologists and substantive experts who provide instruction on innovative techniques designed to enhance quantitative skills in a substantive area. This latest volume focuses on the methodological issues and analyses pertinent to understanding psychological data from a dynamical system perspective. Dynamical systems analysis (DSA) is increasingly used to demonstrate time-dependent variable change. It is used more and more to analyze a variety of psychological phenomena such as relationships, development and aging, emotional regulation, and perceptual processes. The book opens with the best occasions for using DSA methods. The final two chapters focus on the application of dynamical systems methods to problems in psychology such as substance use and gestural dynamics. In addition, it reviews how and when to use: time series models from a discrete time perspective stochastic differential equations in continuous time estimating continuous time differential equation models multilevel models of differential equations to estimate within-person dynamics and the corresponding population means new SEM models for dynamical systems data Data Analytic Techniques for Dynamical Systems is beneficial to advanced students and researchers in the areas of developmental psychology, family studies, language processes, cognitive neuroscience, social and personality psychology, medicine, and emotion. Due to the book’s instructive nature, it serves as an excellent text for advanced courses on this particular technique.
Functional Data Analysis
Author: James Ramsay
Publisher: Springer Science & Business Media
ISBN: 147577107X
Category : Mathematics
Languages : en
Pages : 317
Book Description
Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.
Publisher: Springer Science & Business Media
ISBN: 147577107X
Category : Mathematics
Languages : en
Pages : 317
Book Description
Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.
Dynamical Systems and Numerical Analysis
Author: Andrew Stuart
Publisher: Cambridge University Press
ISBN: 9780521645638
Category : Mathematics
Languages : en
Pages : 708
Book Description
The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulated as dynamical systems and the convergence and stability properties of the methods are examined.
Publisher: Cambridge University Press
ISBN: 9780521645638
Category : Mathematics
Languages : en
Pages : 708
Book Description
The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulated as dynamical systems and the convergence and stability properties of the methods are examined.