Author: Mahmoud Parsian
Publisher: "O'Reilly Media, Inc."
ISBN: 1491906154
Category : Computers
Languages : en
Pages : 778
Book Description
If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)
Data Algorithms
Author: Mahmoud Parsian
Publisher: "O'Reilly Media, Inc."
ISBN: 1491906154
Category : Computers
Languages : en
Pages : 778
Book Description
If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)
Publisher: "O'Reilly Media, Inc."
ISBN: 1491906154
Category : Computers
Languages : en
Pages : 778
Book Description
If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)
Public Policy Analytics
Author: Ken Steif
Publisher: CRC Press
ISBN: 1000401618
Category : Business & Economics
Languages : en
Pages : 254
Book Description
Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand ‘spatial process’ and develop spatial analytics; how to develop ‘useful’ predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and ‘Planning’ are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government.
Publisher: CRC Press
ISBN: 1000401618
Category : Business & Economics
Languages : en
Pages : 254
Book Description
Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand ‘spatial process’ and develop spatial analytics; how to develop ‘useful’ predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and ‘Planning’ are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government.
We Are Data
Author: John Cheney-Lippold
Publisher: NYU Press
ISBN: 1479802441
Category : Social Science
Languages : en
Pages : 313
Book Description
What identity means in an algorithmic age: how it works, how our lives are controlled by it, and how we can resist it Algorithms are everywhere, organizing the near limitless data that exists in our world. Derived from our every search, like, click, and purchase, algorithms determine the news we get, the ads we see, the information accessible to us and even who our friends are. These complex configurations not only form knowledge and social relationships in the digital and physical world, but also determine who we are and who we can be, both on and offline. Algorithms create and recreate us, using our data to assign and reassign our gender, race, sexuality, and citizenship status. They can recognize us as celebrities or mark us as terrorists. In this era of ubiquitous surveillance, contemporary data collection entails more than gathering information about us. Entities like Google, Facebook, and the NSA also decide what that information means, constructing our worlds and the identities we inhabit in the process. We have little control over who we algorithmically are. Our identities are made useful not for us—but for someone else. Through a series of entertaining and engaging examples, John Cheney-Lippold draws on the social constructions of identity to advance a new understanding of our algorithmic identities. We Are Data will educate and inspire readers who want to wrest back some freedom in our increasingly surveilled and algorithmically-constructed world.
Publisher: NYU Press
ISBN: 1479802441
Category : Social Science
Languages : en
Pages : 313
Book Description
What identity means in an algorithmic age: how it works, how our lives are controlled by it, and how we can resist it Algorithms are everywhere, organizing the near limitless data that exists in our world. Derived from our every search, like, click, and purchase, algorithms determine the news we get, the ads we see, the information accessible to us and even who our friends are. These complex configurations not only form knowledge and social relationships in the digital and physical world, but also determine who we are and who we can be, both on and offline. Algorithms create and recreate us, using our data to assign and reassign our gender, race, sexuality, and citizenship status. They can recognize us as celebrities or mark us as terrorists. In this era of ubiquitous surveillance, contemporary data collection entails more than gathering information about us. Entities like Google, Facebook, and the NSA also decide what that information means, constructing our worlds and the identities we inhabit in the process. We have little control over who we algorithmically are. Our identities are made useful not for us—but for someone else. Through a series of entertaining and engaging examples, John Cheney-Lippold draws on the social constructions of identity to advance a new understanding of our algorithmic identities. We Are Data will educate and inspire readers who want to wrest back some freedom in our increasingly surveilled and algorithmically-constructed world.
Algorithms of Education
Author: Kalervo N. Gulson
Publisher: U of Minnesota Press
ISBN: 1452964726
Category : Education
Languages : en
Pages : 196
Book Description
A critique of what lies behind the use of data in contemporary education policy While the science fiction tales of artificial intelligence eclipsing humanity are still very much fantasies, in Algorithms of Education the authors tell real stories of how algorithms and machines are transforming education governance, providing a fascinating discussion and critique of data and its role in education policy. Algorithms of Education explores how, for policy makers, today’s ever-growing amount of data creates the illusion of greater control over the educational futures of students and the work of school leaders and teachers. In fact, the increased datafication of education, the authors argue, offers less and less control, as algorithms and artificial intelligence further abstract the educational experience and distance policy makers from teaching and learning. Focusing on the changing conditions for education policy and governance, Algorithms of Education proposes that schools and governments are increasingly turning to “synthetic governance”—a governance where what is human and machine becomes less clear—as a strategy for optimizing education. Exploring case studies of data infrastructures, facial recognition, and the growing use of data science in education, Algorithms of Education draws on a wide variety of fields—from critical theory and media studies to science and technology studies and education policy studies—mapping the political and methodological directions for engaging with datafication and artificial intelligence in education governance. According to the authors, we must go beyond the debates that separate humans and machines in order to develop new strategies for, and a new politics of, education.
Publisher: U of Minnesota Press
ISBN: 1452964726
Category : Education
Languages : en
Pages : 196
Book Description
A critique of what lies behind the use of data in contemporary education policy While the science fiction tales of artificial intelligence eclipsing humanity are still very much fantasies, in Algorithms of Education the authors tell real stories of how algorithms and machines are transforming education governance, providing a fascinating discussion and critique of data and its role in education policy. Algorithms of Education explores how, for policy makers, today’s ever-growing amount of data creates the illusion of greater control over the educational futures of students and the work of school leaders and teachers. In fact, the increased datafication of education, the authors argue, offers less and less control, as algorithms and artificial intelligence further abstract the educational experience and distance policy makers from teaching and learning. Focusing on the changing conditions for education policy and governance, Algorithms of Education proposes that schools and governments are increasingly turning to “synthetic governance”—a governance where what is human and machine becomes less clear—as a strategy for optimizing education. Exploring case studies of data infrastructures, facial recognition, and the growing use of data science in education, Algorithms of Education draws on a wide variety of fields—from critical theory and media studies to science and technology studies and education policy studies—mapping the political and methodological directions for engaging with datafication and artificial intelligence in education governance. According to the authors, we must go beyond the debates that separate humans and machines in order to develop new strategies for, and a new politics of, education.
The Ethical Algorithm
Author: Michael Kearns
Publisher:
ISBN: 0190948205
Category : Business & Economics
Languages : en
Pages : 229
Book Description
Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
Publisher:
ISBN: 0190948205
Category : Business & Economics
Languages : en
Pages : 229
Book Description
Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
Data Structures and Algorithms with the C++ STL
Author: John Farrier
Publisher: Packt Publishing Ltd
ISBN: 1835469078
Category : Computers
Languages : en
Pages : 458
Book Description
Explore the C++ STL with practical guidance on vectors, algorithms, and custom types for intermediate developers, enriched by real-world examples. Key Features Master the std::vector and understand why it should be your default container of choice Understand each STL algorithm and its practical applications Gain insights into advanced topics such as exception guarantees and thread safety Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWhile the Standard Template Library (STL) offers a rich set of tools for data structures and algorithms, navigating its intricacies can be daunting for intermediate C++ developers without expert guidance. This book offers a thorough exploration of the STL’s components, covering fundamental data structures, advanced algorithms, and concurrency features. Starting with an in-depth analysis of the std::vector, this book highlights its pivotal role in the STL, progressing toward building your proficiency in utilizing vectors, managing memory, and leveraging iterators. The book then advances to STL’s data structures, including sequence containers, associative containers, and unordered containers, simplifying the concepts of container adaptors and views to enhance your knowledge of modern STL programming. Shifting the focus to STL algorithms, you’ll get to grips with sorting, searching, and transformations and develop the skills to implement and modify algorithms with best practices. Advanced sections cover extending the STL with custom types and algorithms, as well as concurrency features, exception safety, and parallel algorithms. By the end of this book, you’ll have transformed into a proficient STL practitioner ready to tackle real-world challenges and build efficient and scalable C++ applications.What you will learn Streamline data handling using the std::vector Master advanced usage of STL iterators Optimize memory in STL containers Implement custom STL allocators Apply sorting and searching with STL algorithms Craft STL-compatible custom types Manage concurrency and ensure thread safety in STL Harness the power of parallel algorithms in STL Who this book is for This book is for intermediate-level C++ developers looking to enhance their software development skills. Familiarity with basic C++ syntax and object-oriented programming (OOP) as well as some exposure to data structures and algorithms is assumed. Tailored to software engineers, computer science students, and hobbyist programmers, this book delves into C++ STL for practical application, performance enhancement, and efficient coding practices.
Publisher: Packt Publishing Ltd
ISBN: 1835469078
Category : Computers
Languages : en
Pages : 458
Book Description
Explore the C++ STL with practical guidance on vectors, algorithms, and custom types for intermediate developers, enriched by real-world examples. Key Features Master the std::vector and understand why it should be your default container of choice Understand each STL algorithm and its practical applications Gain insights into advanced topics such as exception guarantees and thread safety Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWhile the Standard Template Library (STL) offers a rich set of tools for data structures and algorithms, navigating its intricacies can be daunting for intermediate C++ developers without expert guidance. This book offers a thorough exploration of the STL’s components, covering fundamental data structures, advanced algorithms, and concurrency features. Starting with an in-depth analysis of the std::vector, this book highlights its pivotal role in the STL, progressing toward building your proficiency in utilizing vectors, managing memory, and leveraging iterators. The book then advances to STL’s data structures, including sequence containers, associative containers, and unordered containers, simplifying the concepts of container adaptors and views to enhance your knowledge of modern STL programming. Shifting the focus to STL algorithms, you’ll get to grips with sorting, searching, and transformations and develop the skills to implement and modify algorithms with best practices. Advanced sections cover extending the STL with custom types and algorithms, as well as concurrency features, exception safety, and parallel algorithms. By the end of this book, you’ll have transformed into a proficient STL practitioner ready to tackle real-world challenges and build efficient and scalable C++ applications.What you will learn Streamline data handling using the std::vector Master advanced usage of STL iterators Optimize memory in STL containers Implement custom STL allocators Apply sorting and searching with STL algorithms Craft STL-compatible custom types Manage concurrency and ensure thread safety in STL Harness the power of parallel algorithms in STL Who this book is for This book is for intermediate-level C++ developers looking to enhance their software development skills. Familiarity with basic C++ syntax and object-oriented programming (OOP) as well as some exposure to data structures and algorithms is assumed. Tailored to software engineers, computer science students, and hobbyist programmers, this book delves into C++ STL for practical application, performance enhancement, and efficient coding practices.
Algorithms for Data Science
Author: Brian Steele
Publisher: Springer
ISBN: 3319457977
Category : Computers
Languages : en
Pages : 438
Book Description
This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.
Publisher: Springer
ISBN: 3319457977
Category : Computers
Languages : en
Pages : 438
Book Description
This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.
Algorithms and Data Structures for Massive Datasets
Author: Dzejla Medjedovic
Publisher: Simon and Schuster
ISBN: 1638356564
Category : Computers
Languages : en
Pages : 302
Book Description
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Publisher: Simon and Schuster
ISBN: 1638356564
Category : Computers
Languages : en
Pages : 302
Book Description
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
40 Algorithms Every Data Scientist Should Know
Author: Jürgen Weichenberger
Publisher: BPB Publications
ISBN: 9355519834
Category : Computers
Languages : en
Pages : 655
Book Description
DESCRIPTION Mastering AI and ML algorithms is essential for data scientists. This book covers a wide range of techniques, from supervised and unsupervised learning to deep learning and reinforcement learning. This book is a compass to the most important algorithms that every data scientist should have at their disposal when building a new AI/ML application. This book offers a thorough introduction to AI and ML, covering key concepts, data structures, and various algorithms like linear regression, decision trees, and neural networks. It explores learning techniques like supervised, unsupervised, and semi-supervised learning and applies them to real-world scenarios such as natural language processing and computer vision. With clear explanations, code examples, and detailed descriptions of 40 algorithms, including their mathematical foundations and practical applications, this resource is ideal for both beginners and experienced professionals looking to deepen their understanding of AI and ML. The final part of the book gives an outlook for more state-of-the-art algorithms that will have the potential to change the world of AI and ML fundamentals. KEY FEATURES ● Covers a wide range of AI and ML algorithms, from foundational concepts to advanced techniques. ● Includes real-world examples and code snippets to illustrate the application of algorithms. ● Explains complex topics in a clear and accessible manner, making it suitable for learners of all levels. WHAT YOU WILL LEARN ● Differences between supervised, unsupervised, and reinforcement learning. ● Gain expertise in data cleaning, feature engineering, and handling different data formats. ● Learn to implement and apply algorithms such as linear regression, decision trees, neural networks, and support vector machines. ● Creating intelligent systems and solving real-world problems. ● Learn to approach AI and ML challenges with a structured and analytical mindset. WHO THIS BOOK IS FOR This book is ideal for data scientists, ML engineers, and anyone interested in entering the world of AI. TABLE OF CONTENTS 1. Fundamentals 2. Typical Data Structures 3. 40 AI/ML Algorithms Overview 4. Basic Supervised Learning Algorithms 5. Advanced Supervised Learning Algorithms 6. Basic Unsupervised Learning Algorithms 7. Advanced Unsupervised Learning Algorithms 8. Basic Reinforcement Learning Algorithms 9. Advanced Reinforcement Learning Algorithms 10. Basic Semi-Supervised Learning Algorithms 11. Advanced Semi-Supervised Learning Algorithms 12. Natural Language Processing 13. Computer Vision 14. Large-Scale Algorithms 15. Outlook into the Future: Quantum Machine Learning
Publisher: BPB Publications
ISBN: 9355519834
Category : Computers
Languages : en
Pages : 655
Book Description
DESCRIPTION Mastering AI and ML algorithms is essential for data scientists. This book covers a wide range of techniques, from supervised and unsupervised learning to deep learning and reinforcement learning. This book is a compass to the most important algorithms that every data scientist should have at their disposal when building a new AI/ML application. This book offers a thorough introduction to AI and ML, covering key concepts, data structures, and various algorithms like linear regression, decision trees, and neural networks. It explores learning techniques like supervised, unsupervised, and semi-supervised learning and applies them to real-world scenarios such as natural language processing and computer vision. With clear explanations, code examples, and detailed descriptions of 40 algorithms, including their mathematical foundations and practical applications, this resource is ideal for both beginners and experienced professionals looking to deepen their understanding of AI and ML. The final part of the book gives an outlook for more state-of-the-art algorithms that will have the potential to change the world of AI and ML fundamentals. KEY FEATURES ● Covers a wide range of AI and ML algorithms, from foundational concepts to advanced techniques. ● Includes real-world examples and code snippets to illustrate the application of algorithms. ● Explains complex topics in a clear and accessible manner, making it suitable for learners of all levels. WHAT YOU WILL LEARN ● Differences between supervised, unsupervised, and reinforcement learning. ● Gain expertise in data cleaning, feature engineering, and handling different data formats. ● Learn to implement and apply algorithms such as linear regression, decision trees, neural networks, and support vector machines. ● Creating intelligent systems and solving real-world problems. ● Learn to approach AI and ML challenges with a structured and analytical mindset. WHO THIS BOOK IS FOR This book is ideal for data scientists, ML engineers, and anyone interested in entering the world of AI. TABLE OF CONTENTS 1. Fundamentals 2. Typical Data Structures 3. 40 AI/ML Algorithms Overview 4. Basic Supervised Learning Algorithms 5. Advanced Supervised Learning Algorithms 6. Basic Unsupervised Learning Algorithms 7. Advanced Unsupervised Learning Algorithms 8. Basic Reinforcement Learning Algorithms 9. Advanced Reinforcement Learning Algorithms 10. Basic Semi-Supervised Learning Algorithms 11. Advanced Semi-Supervised Learning Algorithms 12. Natural Language Processing 13. Computer Vision 14. Large-Scale Algorithms 15. Outlook into the Future: Quantum Machine Learning
Artificial Intelligence, Big Data, Algorithms and Industry 4.0 in Firms and Clusters
Author: Luciana Lazzeretti
Publisher: Taylor & Francis
ISBN: 1040144306
Category : Business & Economics
Languages : en
Pages : 207
Book Description
This volume offers a wide-ranging discussion on the interrelations among AI, algorithms, big data, and Industry 4.0 to understand the importance of these new paradigms for the development of firms, districts, clusters, cities, regions, and innovation. Drawing on theoretical, empirical, and qualitative studies and using local perspectives, the chapters in this book explore theoretical aspects of AI and its evolution in social sciences, focusing on industry 4.0, smart cities, big data, and other related topics. They examine the role of industrial robots in employment, productivity, and knowledge absorption in industrial districts. They also discuss innovation in the context of local production systems, AI ecosystems, and the growth and potential of the Metaverse. Taken together, the book offers insights to help understand the new dynamics generated by the advent of these technologies and how they may affect regions, cities, clusters, industries, and organizations, and identifies avenues for future research in the development of new trajectories for clusters and firms. This book will be a key resource for scholars and advanced students in the fields of economics, geography, architecture, planning, and management as well as for interdisciplinary researchers who want to learn more about the development of new technologies, the relevance of AI, Big Data and I4.0 for firms and in relation to their adoption in clusters. This book was originally published as a special issue of European Planning Studies.
Publisher: Taylor & Francis
ISBN: 1040144306
Category : Business & Economics
Languages : en
Pages : 207
Book Description
This volume offers a wide-ranging discussion on the interrelations among AI, algorithms, big data, and Industry 4.0 to understand the importance of these new paradigms for the development of firms, districts, clusters, cities, regions, and innovation. Drawing on theoretical, empirical, and qualitative studies and using local perspectives, the chapters in this book explore theoretical aspects of AI and its evolution in social sciences, focusing on industry 4.0, smart cities, big data, and other related topics. They examine the role of industrial robots in employment, productivity, and knowledge absorption in industrial districts. They also discuss innovation in the context of local production systems, AI ecosystems, and the growth and potential of the Metaverse. Taken together, the book offers insights to help understand the new dynamics generated by the advent of these technologies and how they may affect regions, cities, clusters, industries, and organizations, and identifies avenues for future research in the development of new trajectories for clusters and firms. This book will be a key resource for scholars and advanced students in the fields of economics, geography, architecture, planning, and management as well as for interdisciplinary researchers who want to learn more about the development of new technologies, the relevance of AI, Big Data and I4.0 for firms and in relation to their adoption in clusters. This book was originally published as a special issue of European Planning Studies.