Author: Mélody Philippon
Publisher: Frontiers Media SA
ISBN: 2889632865
Category :
Languages : en
Pages : 128
Book Description
Cutting-Edge Analogue Modeling Techniques Applied to Study Earth Systems
Author: Mélody Philippon
Publisher: Frontiers Media SA
ISBN: 2889632865
Category :
Languages : en
Pages : 128
Book Description
Publisher: Frontiers Media SA
ISBN: 2889632865
Category :
Languages : en
Pages : 128
Book Description
Understanding Faults
Author: David Tanner
Publisher: Elsevier
ISBN: 0128159863
Category : Science
Languages : en
Pages : 382
Book Description
Understanding Faults: Detecting, Dating, and Modeling offers a single resource for analyzing faults for a variety of applications, from hazard detection and earthquake processes, to geophysical exploration. The book presents the latest research, including fault dating using new mineral growth, fault reactivation, and fault modeling, and also helps bridge the gap between geologists and geophysicists working across fault-related disciplines. Using diagrams, formulae, and worldwide case studies to illustrate concepts, the book provides geoscientists and industry experts in oil and gas with a valuable reference for detecting, modeling, analyzing and dating faults. - Presents cutting-edge information relating to fault analysis, including mechanical, geometrical and numerical models, theory and methodologies - Includes calculations of fault sealing capabilities - Describes how faults are detected, what fault models predict, and techniques for dating fault movement - Utilizes worldwide case studies throughout the book to concretely illustrate key concepts
Publisher: Elsevier
ISBN: 0128159863
Category : Science
Languages : en
Pages : 382
Book Description
Understanding Faults: Detecting, Dating, and Modeling offers a single resource for analyzing faults for a variety of applications, from hazard detection and earthquake processes, to geophysical exploration. The book presents the latest research, including fault dating using new mineral growth, fault reactivation, and fault modeling, and also helps bridge the gap between geologists and geophysicists working across fault-related disciplines. Using diagrams, formulae, and worldwide case studies to illustrate concepts, the book provides geoscientists and industry experts in oil and gas with a valuable reference for detecting, modeling, analyzing and dating faults. - Presents cutting-edge information relating to fault analysis, including mechanical, geometrical and numerical models, theory and methodologies - Includes calculations of fault sealing capabilities - Describes how faults are detected, what fault models predict, and techniques for dating fault movement - Utilizes worldwide case studies throughout the book to concretely illustrate key concepts
Artificial Intelligence in Earth Science
Author: Ziheng Sun
Publisher: Elsevier
ISBN: 0323972160
Category : Science
Languages : en
Pages : 430
Book Description
Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges provides a comprehensive, step-by-step guide to AI workflows for solving problems in Earth Science. The book focuses on the most challenging problems in applying AI in Earth system sciences, such as training data preparation, model selection, hyperparameter tuning, model structure optimization, spatiotemporal generalization, transforming model results into products, and explaining trained models. In addition, it provides full-stack workflow tutorials to help walk readers through the whole process, regardless of previous AI experience. The book tackles the complexity of Earth system problems in AI engineering, fully guiding geoscientists who are planning to implement AI in their daily work. - Provides practical, step-by-step guides for Earth Scientists who are interested in implementing AI techniques in their work - Features case studies to show real-world examples of techniques described in the book - Includes additional elements to help readers who are new to AI, including end-of-chapter, key concept bulleted lists that concisely cover key concepts in the chapter
Publisher: Elsevier
ISBN: 0323972160
Category : Science
Languages : en
Pages : 430
Book Description
Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges provides a comprehensive, step-by-step guide to AI workflows for solving problems in Earth Science. The book focuses on the most challenging problems in applying AI in Earth system sciences, such as training data preparation, model selection, hyperparameter tuning, model structure optimization, spatiotemporal generalization, transforming model results into products, and explaining trained models. In addition, it provides full-stack workflow tutorials to help walk readers through the whole process, regardless of previous AI experience. The book tackles the complexity of Earth system problems in AI engineering, fully guiding geoscientists who are planning to implement AI in their daily work. - Provides practical, step-by-step guides for Earth Scientists who are interested in implementing AI techniques in their work - Features case studies to show real-world examples of techniques described in the book - Includes additional elements to help readers who are new to AI, including end-of-chapter, key concept bulleted lists that concisely cover key concepts in the chapter
Demystifying Climate Models
Author: Andrew Gettelman
Publisher: Springer
ISBN: 3662489597
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.
Publisher: Springer
ISBN: 3662489597
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.
Applied Mechanics Reviews
Scientific and Technical Aerospace Reports
Digital Terrain Modeling
Author: Zhilin Li
Publisher: CRC Press
ISBN: 0203486749
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
Written by experts, Digital Terrain Modeling: Principles and Methodology provides comprehensive coverage of recent developments in the field. The topics include terrain analysis, sampling strategy, acquisition methodology, surface modeling principles, triangulation algorithms, interpolation techniques, on-line and off-line quality control in data a
Publisher: CRC Press
ISBN: 0203486749
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
Written by experts, Digital Terrain Modeling: Principles and Methodology provides comprehensive coverage of recent developments in the field. The topics include terrain analysis, sampling strategy, acquisition methodology, surface modeling principles, triangulation algorithms, interpolation techniques, on-line and off-line quality control in data a
Earth Resources
Author:
Publisher:
ISBN:
Category : Astronautics in earth sciences
Languages : en
Pages : 664
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International Aerospace Abstracts (IAA).
Publisher:
ISBN:
Category : Astronautics in earth sciences
Languages : en
Pages : 664
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International Aerospace Abstracts (IAA).
Living on an Active Earth
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309065623
Category : Science
Languages : en
Pages : 431
Book Description
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Publisher: National Academies Press
ISBN: 0309065623
Category : Science
Languages : en
Pages : 431
Book Description
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Tectonic Geomorphology
Author: Douglas W. Burbank
Publisher: John Wiley & Sons
ISBN: 1444345044
Category : Science
Languages : en
Pages : 494
Book Description
Tectonic geomorphology is the study of the interplay between tectonic and surface processes that shape the landscape in regions of active deformation and at time scales ranging from days to millions of years. Over the past decade, recent advances in the quantification of both rates and the physical basis of tectonic and surface processes have underpinned an explosion of new research in the field of tectonic geomorphology. Modern tectonic geomorphology is an exceptionally integrative field that utilizes techniques and data derived from studies of geomorphology, seismology, geochronology, structure, geodesy, stratigraphy, meteorology and Quaternary science. While integrating new insights and highlighting controversies from the ten years of research since the 1st edition, this 2nd edition of Tectonic Geomorphology reviews the fundamentals of the subject, including the nature of faulting and folding, the creation and use of geomorphic markers for tracing deformation, chronological techniques that are used to date events and quantify rates, geodetic techniques for defining recent deformation, and paleoseismologic approaches to calibrate past deformation. Overall, this book focuses on the current understanding of the dynamic interplay between surface processes and active tectonics. As it ranges from the timescales of individual earthquakes to the growth and decay of mountain belts, this book provides a timely synthesis of modern research for upper-level undergraduate and graduate earth science students and for practicing geologists. Additional resources for this book can be found at: www.wiley.com/go/burbank/geomorphology.
Publisher: John Wiley & Sons
ISBN: 1444345044
Category : Science
Languages : en
Pages : 494
Book Description
Tectonic geomorphology is the study of the interplay between tectonic and surface processes that shape the landscape in regions of active deformation and at time scales ranging from days to millions of years. Over the past decade, recent advances in the quantification of both rates and the physical basis of tectonic and surface processes have underpinned an explosion of new research in the field of tectonic geomorphology. Modern tectonic geomorphology is an exceptionally integrative field that utilizes techniques and data derived from studies of geomorphology, seismology, geochronology, structure, geodesy, stratigraphy, meteorology and Quaternary science. While integrating new insights and highlighting controversies from the ten years of research since the 1st edition, this 2nd edition of Tectonic Geomorphology reviews the fundamentals of the subject, including the nature of faulting and folding, the creation and use of geomorphic markers for tracing deformation, chronological techniques that are used to date events and quantify rates, geodetic techniques for defining recent deformation, and paleoseismologic approaches to calibrate past deformation. Overall, this book focuses on the current understanding of the dynamic interplay between surface processes and active tectonics. As it ranges from the timescales of individual earthquakes to the growth and decay of mountain belts, this book provides a timely synthesis of modern research for upper-level undergraduate and graduate earth science students and for practicing geologists. Additional resources for this book can be found at: www.wiley.com/go/burbank/geomorphology.