Author: A.J. Rivett
Publisher: Elsevier Science
ISBN: 9780762303878
Category : Science
Languages : en
Pages : 0
Book Description
This volume brings together a set of reviews that provide a summary of our current knowledge of the proteolytic machinery and of the pathways of protein breakdown of prokaryotic and eukaryotic cells. Intracellular protein degradation is much more than just a mechanism for the removal of incorrectly folded or damaged proteins. Since many short-lived proteins have important regulatory functions, proteolysis makes a significant contribution to many cellular processes including cell cycle regulation and transciptional control. In addition, limited proteolytic cleavage can provide a rapid and efficient mechanism of enzyme activation or inactivation in eukaryotic cells. In the first chapter, Maurizi provides an introduction to intracellular protein degradation, describes the structure and functions of bacterial ATP-dependent proteases, and explores the relationship between chaperone functions and protein degradation. Many of the principles also apply to eukaryotic cells, although the proteases involved are often not the same. Interestingly, homologues of one of the bacterial proteases, Ion protease, have been found in mitochondria in yeast and mammals, and homologues of proteasomes, which are found in all eukaryotic cells (see below), have been discovered in some eubacteria. Studies of proteolysis in yeast have contributed greatly to the elucidation of both lysosomal (vacuolar) and nonlysosomal proteolytic pathways in eukaryotic cells. Thumm and Wolf (chapter 2) describe studies that have elucidated the functions of proteasomes in nonlysosomal proteolysis and the contributions of lysosomal proteases to intracellular protein breakdown. Proteins can be selected for degradation by a variety of differen mechanisms. The ubiquitin system is one complex and highly regulated mechanism by which eukaryotic proteins are targetted for degradation by proteosomes. In chapter 3, Wilkinson reviews the components and functions of the ubiquitin system and considers some of the known substrates for this pathway which include cell cycle and transcriptional regulators. The structure and functions of proteosomes and their regulatory components are described in the two subsequent chapters by Tanaka and Tanahashi and by Dubiel and Rechsteiner. Proteasomes were the first known example of threonine proteases. They are multisubunit complexes that, in addition to being responsible for the turnover of most short-lived nuclear and cytoplasmic protein, are also involved in antigen processing for presentation by the MHC class I pathway. Recent studies reviewed by McCracken and colleagues (chapter 6) lead to the exciting conclusion that some ER-associated proteins are degraded by cytosolic proteasomes. Lysosomes are responsible for the degradation of long-lived proteins and for the enhanced protein degradation observed under starvation conditions. In chapter 7 Knecht and colleagues review the lysosomal proteases and describe studies of the roles of lysosomes and the mechanisms for protein uptake into lysosomes. Methods of measuring the relative contribution of different proteolytic systems (e.g., ubiquitin-proteasome pathway, calcium-dependent proteases, lysosomes) to muscle protein degradation, and the conclusions from such studies, are reviewed by Attai and Taillinder in the following chapter. Finally, proteases play an important role in signaling apoptosis by catalyzing the limited cleavage of enzymes. Mason and Beyette review the role of the major players, caspases, which are both activated by and catalyze limite proteolysis, and also consider the involvement of other protoelytic enzymes in this pathway leading cell death.
Intracellular Protein Degradation
Author: A.J. Rivett
Publisher: Elsevier Science
ISBN: 9780762303878
Category : Science
Languages : en
Pages : 0
Book Description
This volume brings together a set of reviews that provide a summary of our current knowledge of the proteolytic machinery and of the pathways of protein breakdown of prokaryotic and eukaryotic cells. Intracellular protein degradation is much more than just a mechanism for the removal of incorrectly folded or damaged proteins. Since many short-lived proteins have important regulatory functions, proteolysis makes a significant contribution to many cellular processes including cell cycle regulation and transciptional control. In addition, limited proteolytic cleavage can provide a rapid and efficient mechanism of enzyme activation or inactivation in eukaryotic cells. In the first chapter, Maurizi provides an introduction to intracellular protein degradation, describes the structure and functions of bacterial ATP-dependent proteases, and explores the relationship between chaperone functions and protein degradation. Many of the principles also apply to eukaryotic cells, although the proteases involved are often not the same. Interestingly, homologues of one of the bacterial proteases, Ion protease, have been found in mitochondria in yeast and mammals, and homologues of proteasomes, which are found in all eukaryotic cells (see below), have been discovered in some eubacteria. Studies of proteolysis in yeast have contributed greatly to the elucidation of both lysosomal (vacuolar) and nonlysosomal proteolytic pathways in eukaryotic cells. Thumm and Wolf (chapter 2) describe studies that have elucidated the functions of proteasomes in nonlysosomal proteolysis and the contributions of lysosomal proteases to intracellular protein breakdown. Proteins can be selected for degradation by a variety of differen mechanisms. The ubiquitin system is one complex and highly regulated mechanism by which eukaryotic proteins are targetted for degradation by proteosomes. In chapter 3, Wilkinson reviews the components and functions of the ubiquitin system and considers some of the known substrates for this pathway which include cell cycle and transcriptional regulators. The structure and functions of proteosomes and their regulatory components are described in the two subsequent chapters by Tanaka and Tanahashi and by Dubiel and Rechsteiner. Proteasomes were the first known example of threonine proteases. They are multisubunit complexes that, in addition to being responsible for the turnover of most short-lived nuclear and cytoplasmic protein, are also involved in antigen processing for presentation by the MHC class I pathway. Recent studies reviewed by McCracken and colleagues (chapter 6) lead to the exciting conclusion that some ER-associated proteins are degraded by cytosolic proteasomes. Lysosomes are responsible for the degradation of long-lived proteins and for the enhanced protein degradation observed under starvation conditions. In chapter 7 Knecht and colleagues review the lysosomal proteases and describe studies of the roles of lysosomes and the mechanisms for protein uptake into lysosomes. Methods of measuring the relative contribution of different proteolytic systems (e.g., ubiquitin-proteasome pathway, calcium-dependent proteases, lysosomes) to muscle protein degradation, and the conclusions from such studies, are reviewed by Attai and Taillinder in the following chapter. Finally, proteases play an important role in signaling apoptosis by catalyzing the limited cleavage of enzymes. Mason and Beyette review the role of the major players, caspases, which are both activated by and catalyze limite proteolysis, and also consider the involvement of other protoelytic enzymes in this pathway leading cell death.
Publisher: Elsevier Science
ISBN: 9780762303878
Category : Science
Languages : en
Pages : 0
Book Description
This volume brings together a set of reviews that provide a summary of our current knowledge of the proteolytic machinery and of the pathways of protein breakdown of prokaryotic and eukaryotic cells. Intracellular protein degradation is much more than just a mechanism for the removal of incorrectly folded or damaged proteins. Since many short-lived proteins have important regulatory functions, proteolysis makes a significant contribution to many cellular processes including cell cycle regulation and transciptional control. In addition, limited proteolytic cleavage can provide a rapid and efficient mechanism of enzyme activation or inactivation in eukaryotic cells. In the first chapter, Maurizi provides an introduction to intracellular protein degradation, describes the structure and functions of bacterial ATP-dependent proteases, and explores the relationship between chaperone functions and protein degradation. Many of the principles also apply to eukaryotic cells, although the proteases involved are often not the same. Interestingly, homologues of one of the bacterial proteases, Ion protease, have been found in mitochondria in yeast and mammals, and homologues of proteasomes, which are found in all eukaryotic cells (see below), have been discovered in some eubacteria. Studies of proteolysis in yeast have contributed greatly to the elucidation of both lysosomal (vacuolar) and nonlysosomal proteolytic pathways in eukaryotic cells. Thumm and Wolf (chapter 2) describe studies that have elucidated the functions of proteasomes in nonlysosomal proteolysis and the contributions of lysosomal proteases to intracellular protein breakdown. Proteins can be selected for degradation by a variety of differen mechanisms. The ubiquitin system is one complex and highly regulated mechanism by which eukaryotic proteins are targetted for degradation by proteosomes. In chapter 3, Wilkinson reviews the components and functions of the ubiquitin system and considers some of the known substrates for this pathway which include cell cycle and transcriptional regulators. The structure and functions of proteosomes and their regulatory components are described in the two subsequent chapters by Tanaka and Tanahashi and by Dubiel and Rechsteiner. Proteasomes were the first known example of threonine proteases. They are multisubunit complexes that, in addition to being responsible for the turnover of most short-lived nuclear and cytoplasmic protein, are also involved in antigen processing for presentation by the MHC class I pathway. Recent studies reviewed by McCracken and colleagues (chapter 6) lead to the exciting conclusion that some ER-associated proteins are degraded by cytosolic proteasomes. Lysosomes are responsible for the degradation of long-lived proteins and for the enhanced protein degradation observed under starvation conditions. In chapter 7 Knecht and colleagues review the lysosomal proteases and describe studies of the roles of lysosomes and the mechanisms for protein uptake into lysosomes. Methods of measuring the relative contribution of different proteolytic systems (e.g., ubiquitin-proteasome pathway, calcium-dependent proteases, lysosomes) to muscle protein degradation, and the conclusions from such studies, are reviewed by Attai and Taillinder in the following chapter. Finally, proteases play an important role in signaling apoptosis by catalyzing the limited cleavage of enzymes. Mason and Beyette review the role of the major players, caspases, which are both activated by and catalyze limite proteolysis, and also consider the involvement of other protoelytic enzymes in this pathway leading cell death.
Trafficking Inside Cells
Author: Nava Segev
Publisher: Springer Science & Business Media
ISBN: 038793877X
Category : Science
Languages : en
Pages : 459
Book Description
This book covers the past, present and future of the intra-cellular trafficking field, which has made a quantum leap in the last few decades. It details how the field has developed and evolved as well as examines future directions.
Publisher: Springer Science & Business Media
ISBN: 038793877X
Category : Science
Languages : en
Pages : 459
Book Description
This book covers the past, present and future of the intra-cellular trafficking field, which has made a quantum leap in the last few decades. It details how the field has developed and evolved as well as examines future directions.
The dynamic state of body constituents
Protein Homeostasis
Author: Richard I. Morimoto
Publisher:
ISBN: 9781936113064
Category : Biological transport
Languages : en
Pages : 0
Book Description
Proper folding of proteins is crucial for cell function. Chaperones and enzymes that post-translationally modify newly synthesized proteins help ensure that proteins fold correctly, and the unfolded protein response functions as a homeostatic mechanism that removes misfolded proteins when cells are stressed. This book covers the entire spectrum of proteostasis in healthy cells and the diseases that result when control of protein production, protein folding, and protein degradation goes awry.
Publisher:
ISBN: 9781936113064
Category : Biological transport
Languages : en
Pages : 0
Book Description
Proper folding of proteins is crucial for cell function. Chaperones and enzymes that post-translationally modify newly synthesized proteins help ensure that proteins fold correctly, and the unfolded protein response functions as a homeostatic mechanism that removes misfolded proteins when cells are stressed. This book covers the entire spectrum of proteostasis in healthy cells and the diseases that result when control of protein production, protein folding, and protein degradation goes awry.
Cumulated Index Medicus
Intracellular Calcium-Dependent Proteolysis
Author: Ronald L. Mellgren
Publisher: CRC Press
ISBN: 1351090712
Category : Science
Languages : en
Pages : 427
Book Description
Intracellular Calcium-Dependent Proteolysis explains what is now known about calpains, which are intracellular, non-lysosomal enzymes involved in intracellular protein catabolism. The book provides a comprehensive overview of topics ranging from the molecular biology of the calpains and their specific inhibitor protein (calpastatin) to physiologic and pathologic consequences of the presence of this proteolytic system in many model cells and tissues. Several theoretical functions of the calpains are discussed, including their potential roles in muscle protein turnover, platelet activation, membrane fusion, and synaptic plasticity. Intracellular Calcium-Dependent Proteolysis is a valuable source of information for researchers and students interested in the regulation of intracellular protein catabolism and the general effects of Ca2+ on cell function.
Publisher: CRC Press
ISBN: 1351090712
Category : Science
Languages : en
Pages : 427
Book Description
Intracellular Calcium-Dependent Proteolysis explains what is now known about calpains, which are intracellular, non-lysosomal enzymes involved in intracellular protein catabolism. The book provides a comprehensive overview of topics ranging from the molecular biology of the calpains and their specific inhibitor protein (calpastatin) to physiologic and pathologic consequences of the presence of this proteolytic system in many model cells and tissues. Several theoretical functions of the calpains are discussed, including their potential roles in muscle protein turnover, platelet activation, membrane fusion, and synaptic plasticity. Intracellular Calcium-Dependent Proteolysis is a valuable source of information for researchers and students interested in the regulation of intracellular protein catabolism and the general effects of Ca2+ on cell function.
Molecular Biology and Toxicology of Metals
Author: Rudolfs K. Zalups
Publisher: CRC Press
ISBN: 9780748407989
Category : Medical
Languages : en
Pages : 608
Book Description
Molecular Biology and Toxicology of Metals provides a critical review and analysis of the current state of knowledge of metal ion transport and metabolism in prokaryotic and eukaryotic cellular systems. It covers the latest information on specific metals and the biological molecules with which metals interact. It also details mechanisms in the handling and toxicity of metals in specific organ systems, and the role of metals in cell signalling and gene transcription in target cells. This book is sure to prove a fertile meeting ground for the disciplines of molecular genetics and metal toxicology.
Publisher: CRC Press
ISBN: 9780748407989
Category : Medical
Languages : en
Pages : 608
Book Description
Molecular Biology and Toxicology of Metals provides a critical review and analysis of the current state of knowledge of metal ion transport and metabolism in prokaryotic and eukaryotic cellular systems. It covers the latest information on specific metals and the biological molecules with which metals interact. It also details mechanisms in the handling and toxicity of metals in specific organ systems, and the role of metals in cell signalling and gene transcription in target cells. This book is sure to prove a fertile meeting ground for the disciplines of molecular genetics and metal toxicology.
Oxidative Damage & Repair
Author: Kelvin J. A. Davies
Publisher: Elsevier
ISBN: 1483287661
Category : Health & Fitness
Languages : en
Pages : 928
Book Description
This book was inspired by the presentations delivered at the Oxidative Damage & Repair Symposium (November, 1990). The book is organized into 20 chapters which mirror the 20 session topics of the Oxidative Damage & Repair Symposium.
Publisher: Elsevier
ISBN: 1483287661
Category : Health & Fitness
Languages : en
Pages : 928
Book Description
This book was inspired by the presentations delivered at the Oxidative Damage & Repair Symposium (November, 1990). The book is organized into 20 chapters which mirror the 20 session topics of the Oxidative Damage & Repair Symposium.
New Trends in Vascular Inflammation Research: From Biology to Therapy
Author: Masanori Aikawa
Publisher: Frontiers Media SA
ISBN: 2889456374
Category :
Languages : en
Pages : 193
Book Description
Publisher: Frontiers Media SA
ISBN: 2889456374
Category :
Languages : en
Pages : 193
Book Description
The Proteasome — Ubiquitin Protein Degradation Pathway
Author: Peter Zwickl
Publisher: Springer Science & Business Media
ISBN: 364259414X
Category : Science
Languages : en
Pages : 222
Book Description
This volume gives an overview of pro tea some-mediated protein degradation and the regulatory role of the ubiquitin system in cellular proteolysis. The first chapter describes the molecular evolution of the proteasome and its associated activators, i. e. , the 20S core, the base and the lid of the 19S cap, and the 11 S regulator. The ensuing chapter gives an overview of the structure and assembly of the 20S proteasome and the regulation of the archaeal proteasome by PAN. The third contribution summarizes our knowledge on the eukaryotic 26S proteasome and its regulation by the 19S regu lator, followed by a chapter devoted to the llS regulator, which elucidates the structural basis for the 11 S-mediated activation of the 20S proteasome. The fifth chapter reviews in detail the role of the proteasome in the immune response. The subsequent chapter of the natural substrates of the gives a comprehensive description proteasome and their recognition by the enzymes of the ubiqui tination machinery. The penultimate chapter rounds up the in formation on intracellular distribution of proteasomes in yeast and mammalian cells, while the last contribution highlights proteasome inhibitors, tools which proved to be very valuable for dissecting the cellular roles of the proteasome and which might turn out to be of pharmacological importance.
Publisher: Springer Science & Business Media
ISBN: 364259414X
Category : Science
Languages : en
Pages : 222
Book Description
This volume gives an overview of pro tea some-mediated protein degradation and the regulatory role of the ubiquitin system in cellular proteolysis. The first chapter describes the molecular evolution of the proteasome and its associated activators, i. e. , the 20S core, the base and the lid of the 19S cap, and the 11 S regulator. The ensuing chapter gives an overview of the structure and assembly of the 20S proteasome and the regulation of the archaeal proteasome by PAN. The third contribution summarizes our knowledge on the eukaryotic 26S proteasome and its regulation by the 19S regu lator, followed by a chapter devoted to the llS regulator, which elucidates the structural basis for the 11 S-mediated activation of the 20S proteasome. The fifth chapter reviews in detail the role of the proteasome in the immune response. The subsequent chapter of the natural substrates of the gives a comprehensive description proteasome and their recognition by the enzymes of the ubiqui tination machinery. The penultimate chapter rounds up the in formation on intracellular distribution of proteasomes in yeast and mammalian cells, while the last contribution highlights proteasome inhibitors, tools which proved to be very valuable for dissecting the cellular roles of the proteasome and which might turn out to be of pharmacological importance.