Current Development of Nuclear Thermal Propulsion Technologies at the Center for Space Nuclear Research PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Current Development of Nuclear Thermal Propulsion Technologies at the Center for Space Nuclear Research PDF full book. Access full book title Current Development of Nuclear Thermal Propulsion Technologies at the Center for Space Nuclear Research by . Download full books in PDF and EPUB format.

Current Development of Nuclear Thermal Propulsion Technologies at the Center for Space Nuclear Research

Current Development of Nuclear Thermal Propulsion Technologies at the Center for Space Nuclear Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

Current Development of Nuclear Thermal Propulsion Technologies at the Center for Space Nuclear Research

Current Development of Nuclear Thermal Propulsion Technologies at the Center for Space Nuclear Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

The Development of Nuclear Thermal Propulsion Technology for Use in Space

The Development of Nuclear Thermal Propulsion Technology for Use in Space PDF Author: United States. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Investigations and Oversight
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 420

Book Description


Nuclear Thermal Propulsion Systems

Nuclear Thermal Propulsion Systems PDF Author: David Buden
Publisher:
ISBN: 9780974144337
Category : Science
Languages : en
Pages : 144

Book Description
Interest in rockets that use fission reactors as the heat source has centered on manned flights to Mars. The demands of such missions require rockets that are several times more powerful than the chemical rockets in use today.Rocket engines operate according to the basic principles expressed in Newton's third law of motion: for every action there is an equal and opposite reaction. In a chemical rocket, hot gases are created by chemical combustion; in a nuclear rocket heating of the propellant in a nuclear reactor creates hot gas. In either case, the hot gases flow through the throat of the rocket nozzle where they expand and develop thrust.Extensive development effort has been expended on nuclear rockets. The nuclear Rover/ NERVA rocket programs provide a very high confidence level that the technology for a flight nuclear rocket exists. These programs demonstrated power levels between 507 MWt and 4,100 MWt and thrust levels of up to 930 kN (200,000 Ibf). Specific impulse, a measure of rocket performance, was more than twice that of chemical rockets. Ground testing and technology development has been done on several concepts described in this book. However, though there appear to be no technical barriers to the development of a successful nuclear rocket, no nuclear rockets have been flown in space.This book describes the fundamentals of nuclear rockets, the safety and other mission requirements, developmental history of various concepts both in the U.S. and Russia, and it summarizes key developmental issues.

Space Nuclear Propulsion for Human Mars Exploration

Space Nuclear Propulsion for Human Mars Exploration PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309684804
Category :
Languages : en
Pages :

Book Description
Space Nuclear Propulsion for Human Mars Exploration identifies primary technical and programmatic challenges, merits, and risks for developing and demonstrating space nuclear propulsion technologies of interest to future exploration missions. This report presents key milestones and a top-level development and demonstration roadmap for performance nuclear thermal propulsion and nuclear electric propulsion systems and identifies missions that could be enabled by successful development of each technology.

Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 518

Book Description


Nuclear Thermal Propulsion Technology

Nuclear Thermal Propulsion Technology PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781723236860
Category :
Languages : en
Pages : 138

Book Description
NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies. Clark, John S. and Mcdaniel, Patrick and Howe, Steven and Helms, Ira and Stanley, Marland Glenn Research Center NUCLEAR ELECTRIC PROPULSION; PROJECT MANAGEMENT; PROJECT PLANNING; PROPULSION SYSTEM CONFIGURATIONS; PROPULSION SYSTEM PERFORMANCE; ROCKET ENGINE DESIGN; TEST FACILITIES; FEED SYSTEMS; NUCLEAR FUELS; RADIATION PROTECTION; SPACE EXPLORATION; SPACECREW...

RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS.

RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

Space Nuclear Propulsion and Power

Space Nuclear Propulsion and Power PDF Author: Bahram Nassersharif
Publisher:
ISBN:
Category : History
Languages : en
Pages : 0

Book Description
"Space Nuclear Propulsion and Power: Principles, Systems, and Applications" is a comprehensive exploration into the science and technology of nuclear systems designed for space missions. This book offers an in-depth analysis of nuclear propulsion and power generation, focusing on the principles and mechanisms that drive these systems, as well as their practical applications in space exploration. The book begins with a detailed overview of the fundamental principles of nuclear physics and reactor design, providing the necessary background for understanding how nuclear energy can be harnessed for space applications. It delves into the various types of nuclear propulsion systems, including Nuclear Thermal Propulsion (NTP) and Nuclear Electric Propulsion (NEP), explaining the operational mechanisms, benefits, and challenges of each. A significant portion of the book is dedicated to the engineering and technological aspects of these systems. It covers the design, development, and testing of nuclear reactors and propulsion units, emphasizing the importance of safety, reliability, and efficiency. The book also discusses the critical role of materials science in addressing the unique challenges posed by the space environment, such as extreme temperatures, radiation exposure, and the need for long-term durability. In addition to propulsion, the book explores nuclear power generation for spacecraft, including systems that provide electricity for onboard instruments, life support, and communication. It examines the integration of nuclear power systems with other spacecraft components, highlighting how these technologies enable long-duration missions to distant planets and beyond. "Space Nuclear Propulsion and Power" also considers the future of space exploration, discussing emerging technologies and potential advancements in nuclear systems that could further expand humanity's reach into the cosmos. It addresses the economic, environmental, and regulatory challenges associated with deploying nuclear technology in space, offering insights into how these obstacles might be overcome. This book is an essential resource for engineers, scientists, and students interested in the cutting-edge field of space nuclear technology, offering a thorough understanding of both current systems and future possibilities in space exploration.

Space Nuclear Propulsion and Power

Space Nuclear Propulsion and Power PDF Author: Bahram Nassersharif, PH D
Publisher: Independently Published
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Space Nuclear Propulsion and Power: Principles, Systems, and Applications Unlock the Future of Space Exploration Space Nuclear Propulsion and Power: Principles, Systems, and Applications is a vital text for students, practitioners, and industry professionals, offering a deep exploration of space nuclear propulsion and power systems. This extensive guide provides essential knowledge for understanding and advancing technologies that will propel humanity into space. In-depth Coverage of Cutting-Edge Technologies This book examines various propulsion systems, including chemical and nuclear thermal propulsion. It details the fundamentals of rocket propulsion, combustion dynamics, nozzle design, and critical calculations. Readers gain insights into practical considerations, such as high-speed exhaust gas generation and efficiency optimization. Advanced Mathematical Formulations and Real-World Examples To ensure practical application, the book includes real-world examples and detailed mathematical formulations, such as the Tsiolkovsky rocket equation, nuclear fission, radioactivity, and neutronics. These examples help readers understand and apply principles to their studies in space nuclear systems. The structured approach, combining theory with practical examples, makes complex concepts accessible and engaging. Innovative Power Solutions for Space Missions Beyond propulsion, the book explores radioisotope thermoelectric generators (RTGs) and nuclear reactors for powering spacecraft and lunar bases. RTGs, converting heat from radioisotope decay into electricity, have powered missions like Voyager, Cassini, and New Horizons. Nuclear reactors offer high power levels for propulsion and power generation, with detailed coverage of Nuclear Thermal Propulsion (NTP) and Nuclear Electric Propulsion (NEP). NTP systems use a nuclear reactor to heat hydrogen, producing thrust, while NEP systems generate electricity to power electric thrusters, ideal for deep space missions. Powering Lunar Bases and Mars Missions Nuclear technologies extend beyond space travel to lunar and Mars missions. Nuclear reactors provide robust power sources for habitats, scientific experiments, and resource extraction on the Moon and Mars. These environments make solar power less viable, especially for long-duration missions. Nuclear power supports life support systems, communication, and mobility, offering sustainable energy where sunlight is insufficient. Inspiration for Future Innovators Space Nuclear Propulsion and Power is more than a textbook; it challenges readers to think critically about the future of space exploration and the role of nuclear technology. Emphasizing theory and practice integration, the book inspires curiosity and innovation, encouraging contributions to ongoing design and development in this fascinating field. Join the Journey to the Stars Whether you are a student or a seasoned professional, Space Nuclear Propulsion and Power offers valuable insights and guidance. Engage with the material, challenge presented concepts, and join the community advancing technologies that will shape space exploration's future and our understanding of the universe. Embrace the journey into the unknown and unlock the potential of space nuclear propulsion and power with this definitive text. Welcome to an exploration of technologies propelling humanity to the stars.

Space Nuclear Thermal Propulsion (SNTP) Program, Particle Bed Reactor Propulsion Technology Development and Validation

Space Nuclear Thermal Propulsion (SNTP) Program, Particle Bed Reactor Propulsion Technology Development and Validation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 426

Book Description