Author: Walter Bollmann
Publisher: Springer Science & Business Media
ISBN: 3642491731
Category : Science
Languages : en
Pages : 264
Book Description
It is nonnal for the preface to explain the motivation behind the writing of the book. Since many good books dealing with the general theory of crystal defects already exist, a new book has to be especially justified, and here its main justification lies in its treatment of crystal line interfaces. About 1961, the work of the author, essentially based on the fundamental work of Professor F. C. Frank, started to branch away from the main flow of thought in this field and eventually led to a general geometrical theory which is presented as a whole for the first time in this book. Although nearly all that is presented has already been published in different journals and symposia, it might be difficult for the reader to follow that literature, as a new terminology and new methods of analysis had to be developed. Special emphasis is given to discussion and many diagrams are included in order that a clear view of the basic concepts be obtained. Intennediate summaries try to bring out the main points of the chapters. Instead of specific exercises, general suggestions for them are given. The part up to chapter 9 is considered more or less as introductory, so that the book can be studied without specific knowledge of crystals and crystal defects. The presentation of that part developed out of lectures given by the author at the Swiss Federal Institute of Technology (ETH) in Zurich.
Crystal Defects and Crystalline Interfaces
Author: Walter Bollmann
Publisher: Springer Science & Business Media
ISBN: 3642491731
Category : Science
Languages : en
Pages : 264
Book Description
It is nonnal for the preface to explain the motivation behind the writing of the book. Since many good books dealing with the general theory of crystal defects already exist, a new book has to be especially justified, and here its main justification lies in its treatment of crystal line interfaces. About 1961, the work of the author, essentially based on the fundamental work of Professor F. C. Frank, started to branch away from the main flow of thought in this field and eventually led to a general geometrical theory which is presented as a whole for the first time in this book. Although nearly all that is presented has already been published in different journals and symposia, it might be difficult for the reader to follow that literature, as a new terminology and new methods of analysis had to be developed. Special emphasis is given to discussion and many diagrams are included in order that a clear view of the basic concepts be obtained. Intennediate summaries try to bring out the main points of the chapters. Instead of specific exercises, general suggestions for them are given. The part up to chapter 9 is considered more or less as introductory, so that the book can be studied without specific knowledge of crystals and crystal defects. The presentation of that part developed out of lectures given by the author at the Swiss Federal Institute of Technology (ETH) in Zurich.
Publisher: Springer Science & Business Media
ISBN: 3642491731
Category : Science
Languages : en
Pages : 264
Book Description
It is nonnal for the preface to explain the motivation behind the writing of the book. Since many good books dealing with the general theory of crystal defects already exist, a new book has to be especially justified, and here its main justification lies in its treatment of crystal line interfaces. About 1961, the work of the author, essentially based on the fundamental work of Professor F. C. Frank, started to branch away from the main flow of thought in this field and eventually led to a general geometrical theory which is presented as a whole for the first time in this book. Although nearly all that is presented has already been published in different journals and symposia, it might be difficult for the reader to follow that literature, as a new terminology and new methods of analysis had to be developed. Special emphasis is given to discussion and many diagrams are included in order that a clear view of the basic concepts be obtained. Intennediate summaries try to bring out the main points of the chapters. Instead of specific exercises, general suggestions for them are given. The part up to chapter 9 is considered more or less as introductory, so that the book can be studied without specific knowledge of crystals and crystal defects. The presentation of that part developed out of lectures given by the author at the Swiss Federal Institute of Technology (ETH) in Zurich.
Crystallography and Crystal Defects
Author: Anthony Kelly
Publisher: John Wiley & Sons
ISBN: 9780471720447
Category : Science
Languages : en
Pages : 492
Book Description
Crystallography and Crystal Defects Revised Edition A. Kelly, Churchill College, Cambridge, UK G. W. Groves, Exeter College, Oxford, UK and P. Kidd, Queen Mary and Westfield College, University of London, UK The concepts of crystallography are introduced here in such a way that the physical properties of crystals, including their mechanical behaviour, can be better understood and quantified. A unique approach to the treatment of crystals and their defects is taken in that the often separate disciplines of crystallography, tensor analysis, elasticity and dislocation theory are combined in such a way as to equip materials scientists with knowledge of all the basic principles required to interpret data from their experiments. This is a revised and updated version of the widely acclaimed book by Kelly and Groves that was first published nearly thirty years ago. The material remains timely and relevant and the first edition still holds an unrivalled position at the core of the teaching of crystallography and crystal defects today. Undergraduate readers will acquire a rigorous grounding, from first principles, in the crystal classes and the concept of a lattice and its defects and their descriptions using vectors. Researchers will find here all the theorems of crystal structure upon which to base their work and the equations necessary for calculating interplanar spacings, transformation of indices and manipulations involving the stereographic projection and transformations of tensors and matrices.
Publisher: John Wiley & Sons
ISBN: 9780471720447
Category : Science
Languages : en
Pages : 492
Book Description
Crystallography and Crystal Defects Revised Edition A. Kelly, Churchill College, Cambridge, UK G. W. Groves, Exeter College, Oxford, UK and P. Kidd, Queen Mary and Westfield College, University of London, UK The concepts of crystallography are introduced here in such a way that the physical properties of crystals, including their mechanical behaviour, can be better understood and quantified. A unique approach to the treatment of crystals and their defects is taken in that the often separate disciplines of crystallography, tensor analysis, elasticity and dislocation theory are combined in such a way as to equip materials scientists with knowledge of all the basic principles required to interpret data from their experiments. This is a revised and updated version of the widely acclaimed book by Kelly and Groves that was first published nearly thirty years ago. The material remains timely and relevant and the first edition still holds an unrivalled position at the core of the teaching of crystallography and crystal defects today. Undergraduate readers will acquire a rigorous grounding, from first principles, in the crystal classes and the concept of a lattice and its defects and their descriptions using vectors. Researchers will find here all the theorems of crystal structure upon which to base their work and the equations necessary for calculating interplanar spacings, transformation of indices and manipulations involving the stereographic projection and transformations of tensors and matrices.
Elements of Structures and Defects of Crystalline Materials
Author: Tsang-Tse Fang
Publisher: Elsevier
ISBN: 0128142693
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
Elements of Structures and Defects of Crystalline Materials has been written to cover not only the fundamental principles behind structures and defects, but also to provide deep insights into understanding the relationships of properties, defect chemistry and processing of the concerned materials. Part One deals with structures, while Part Two covers defects. Since the knowledge of the electron configuration of elements is necessary for understanding the nature of chemical bonding, it is discussed in the opening chapter. Chapter Two then describes the bonding formation within the crystal structures of varied materials, with Chapter Three delving into how a material's structure is formed. In view of the importance of the effects of the structure distortion on the material properties due to the fields, the related topics have been included in section 3.4. Moreover, several materials still under intensive investigation have been illustrated to provide deep insights into understanding the effects of the relationships of processing, structures and defects on the material properties. The defects of materials are explored in Part II. Chapter 4 deals with the point defects of metal and ceramics. Chapter 5 covers the fundamentals of the characteristics of dislocations, wherein physics and the atomic mechanics of several issues have been described in detail. In view of the significant influence of the morphologies including size, shape and distribution of grains, phases on the microstructure evolution, and, in turn, the properties of materials, the final chapter focuses on the fundamentals of interface energies, including single phase (grain) boundary and interphase boundary. - Discusses the relationship between properties, defect chemistry and the processing of materials - Presents coverage of the fundamental principles behind structures and defects - Includes information on two-dimensional and three-dimensional imperfections in solids
Publisher: Elsevier
ISBN: 0128142693
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
Elements of Structures and Defects of Crystalline Materials has been written to cover not only the fundamental principles behind structures and defects, but also to provide deep insights into understanding the relationships of properties, defect chemistry and processing of the concerned materials. Part One deals with structures, while Part Two covers defects. Since the knowledge of the electron configuration of elements is necessary for understanding the nature of chemical bonding, it is discussed in the opening chapter. Chapter Two then describes the bonding formation within the crystal structures of varied materials, with Chapter Three delving into how a material's structure is formed. In view of the importance of the effects of the structure distortion on the material properties due to the fields, the related topics have been included in section 3.4. Moreover, several materials still under intensive investigation have been illustrated to provide deep insights into understanding the effects of the relationships of processing, structures and defects on the material properties. The defects of materials are explored in Part II. Chapter 4 deals with the point defects of metal and ceramics. Chapter 5 covers the fundamentals of the characteristics of dislocations, wherein physics and the atomic mechanics of several issues have been described in detail. In view of the significant influence of the morphologies including size, shape and distribution of grains, phases on the microstructure evolution, and, in turn, the properties of materials, the final chapter focuses on the fundamentals of interface energies, including single phase (grain) boundary and interphase boundary. - Discusses the relationship between properties, defect chemistry and the processing of materials - Presents coverage of the fundamental principles behind structures and defects - Includes information on two-dimensional and three-dimensional imperfections in solids
An Introduction to Composite Materials
Author: D. Hull
Publisher: Cambridge University Press
ISBN: 1107393183
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.
Publisher: Cambridge University Press
ISBN: 1107393183
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.
Physical Foundations of Materials Science
Author: Günter Gottstein
Publisher: Springer Science & Business Media
ISBN: 3662092913
Category : Technology & Engineering
Languages : en
Pages : 511
Book Description
In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.
Publisher: Springer Science & Business Media
ISBN: 3662092913
Category : Technology & Engineering
Languages : en
Pages : 511
Book Description
In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.
Handbook of Materials Structures, Properties, Processing and Performance
Author: Lawrence E. Murr
Publisher: Springer
ISBN: 9783319019055
Category : Technology & Engineering
Languages : en
Pages : 1500
Book Description
This extensive knowledge base provides a coherent description of advanced topics in materials science and engineering with an interdisciplinary/multidisciplinary approach. The book incorporates a historical account of critical developments and the evolution of materials fundamentals, providing an important perspective for materials innovations, including advances in processing, selection, characterization, and service life prediction. It includes the perspectives of materials chemistry, materials physics, engineering design, and biological materials as these relate to crystals, crystal defects, and natural and biological materials hierarchies, from the atomic and molecular to the macroscopic, and emphasizing natural and man-made composites. This expansive presentation of topics explores interrelationships among properties, processing, and synthesis (historic and contemporary). The book serves as both an authoritative reference and roadmap of advanced materials concepts for practitioners, graduate-level students, and faculty coming from a range of disciplines.
Publisher: Springer
ISBN: 9783319019055
Category : Technology & Engineering
Languages : en
Pages : 1500
Book Description
This extensive knowledge base provides a coherent description of advanced topics in materials science and engineering with an interdisciplinary/multidisciplinary approach. The book incorporates a historical account of critical developments and the evolution of materials fundamentals, providing an important perspective for materials innovations, including advances in processing, selection, characterization, and service life prediction. It includes the perspectives of materials chemistry, materials physics, engineering design, and biological materials as these relate to crystals, crystal defects, and natural and biological materials hierarchies, from the atomic and molecular to the macroscopic, and emphasizing natural and man-made composites. This expansive presentation of topics explores interrelationships among properties, processing, and synthesis (historic and contemporary). The book serves as both an authoritative reference and roadmap of advanced materials concepts for practitioners, graduate-level students, and faculty coming from a range of disciplines.
Imperfections in Crystalline Solids
Author: Wei Cai
Publisher: Cambridge University Press
ISBN: 1316571718
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.
Publisher: Cambridge University Press
ISBN: 1316571718
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.
Introduction To Elasticity Theory For Crystal Defects (Second Edition)
Author: Robert W Balluffi
Publisher: World Scientific Publishing Company
ISBN: 9814749745
Category : Science
Languages : en
Pages : 661
Book Description
The book presents a unified and self-sufficient and reader-friendly introduction to the anisotropic elasticity theory necessary to model a wide range of point, line, planar and volume type crystal defects (e.g., vacancies, dislocations, interfaces, inhomogeneities and inclusions).The necessary elasticity theory is first developed along with basic methods for obtaining solutions. This is followed by a detailed treatment of each defect type. Included are analyses of their elastic fields and energies, their interactions with imposed stresses and image stresses, and the interactions that occur between them, all employing the basic methods introduced earlier.All results are derived in full with intermediate steps shown, and 'it can be shown' is avoided. A particular effort is made to describe and compare different methods of solving important problems. Numerous exercises (with solutions) are provided to strengthen the reader's understanding and extend the immediate text.In the 2nd edition an additional chapter has been added which treats the important topic of the self-forces that are experienced by defects that are extended in more than one dimension. A considerable number of exercises have been added which expand the scope of the book and furnish further insights. Numerous sections of the book have been rewritten to provide additional clarity and scope.The major aim of the book is to provide, in one place, a unique and complete introduction to the anisotropic theory of elasticity for defects written in a manner suitable for both students and professionals.
Publisher: World Scientific Publishing Company
ISBN: 9814749745
Category : Science
Languages : en
Pages : 661
Book Description
The book presents a unified and self-sufficient and reader-friendly introduction to the anisotropic elasticity theory necessary to model a wide range of point, line, planar and volume type crystal defects (e.g., vacancies, dislocations, interfaces, inhomogeneities and inclusions).The necessary elasticity theory is first developed along with basic methods for obtaining solutions. This is followed by a detailed treatment of each defect type. Included are analyses of their elastic fields and energies, their interactions with imposed stresses and image stresses, and the interactions that occur between them, all employing the basic methods introduced earlier.All results are derived in full with intermediate steps shown, and 'it can be shown' is avoided. A particular effort is made to describe and compare different methods of solving important problems. Numerous exercises (with solutions) are provided to strengthen the reader's understanding and extend the immediate text.In the 2nd edition an additional chapter has been added which treats the important topic of the self-forces that are experienced by defects that are extended in more than one dimension. A considerable number of exercises have been added which expand the scope of the book and furnish further insights. Numerous sections of the book have been rewritten to provide additional clarity and scope.The major aim of the book is to provide, in one place, a unique and complete introduction to the anisotropic theory of elasticity for defects written in a manner suitable for both students and professionals.
Defects in Solids
Author: Richard J. D. Tilley
Publisher: John Wiley & Sons
ISBN: 047038073X
Category : Science
Languages : en
Pages : 549
Book Description
Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.
Publisher: John Wiley & Sons
ISBN: 047038073X
Category : Science
Languages : en
Pages : 549
Book Description
Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.
Crystallography and Crystal Defects
Author: Anthony Kelly
Publisher: John Wiley & Sons
ISBN: 1119420172
Category : Science
Languages : en
Pages : 584
Book Description
The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of Crystallography and Crystal Defects explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. Fully revised and updated, this book now includes: Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level, Crystallography and Crystal Defects, Third Edition continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.
Publisher: John Wiley & Sons
ISBN: 1119420172
Category : Science
Languages : en
Pages : 584
Book Description
The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of Crystallography and Crystal Defects explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. Fully revised and updated, this book now includes: Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level, Crystallography and Crystal Defects, Third Edition continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.