Author: Richard S. Palais
Publisher: Springer
ISBN: 3540459960
Category : Mathematics
Languages : en
Pages : 276
Book Description
Critical Point Theory and Submanifold Geometry
Geometry And Topology Of Submanifolds, Iii: Proceedings Of The Leeds Differential Geometry Workshop 1990
Author: Alan West
Publisher: World Scientific
ISBN: 9814611344
Category :
Languages : en
Pages : 336
Book Description
This workshop collected together works by experts working in various aspects of the differential geometry of submanifold and discussed recent advances and unsolved problems. Two important linking lectures were on the work done by Thorbergsson and others on classifying isoparametric submanifolds of Euclidean spaces and the generalisation of these to Hilbert spaces due to Terng and others. Isoparametric submanifolds provides examples of minimal, taut submanifolds, of harmonic maps and submanifolds with parallel second fundamental form-all topics discussed at this workshop. There were also lectures on the rapidly developing topic of the affine geometry of hypersurfaces and on applications. Amomg the applications discussed are new methods for using PDE's for generating surfaces with special shapes for use in engineering design.
Publisher: World Scientific
ISBN: 9814611344
Category :
Languages : en
Pages : 336
Book Description
This workshop collected together works by experts working in various aspects of the differential geometry of submanifold and discussed recent advances and unsolved problems. Two important linking lectures were on the work done by Thorbergsson and others on classifying isoparametric submanifolds of Euclidean spaces and the generalisation of these to Hilbert spaces due to Terng and others. Isoparametric submanifolds provides examples of minimal, taut submanifolds, of harmonic maps and submanifolds with parallel second fundamental form-all topics discussed at this workshop. There were also lectures on the rapidly developing topic of the affine geometry of hypersurfaces and on applications. Amomg the applications discussed are new methods for using PDE's for generating surfaces with special shapes for use in engineering design.
Submanifolds and Holonomy
Author: Jurgen Berndt
Publisher: CRC Press
ISBN: 1482245167
Category : Mathematics
Languages : en
Pages : 494
Book Description
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom
Publisher: CRC Press
ISBN: 1482245167
Category : Mathematics
Languages : en
Pages : 494
Book Description
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom
New Developments in Lie Theory and Geometry
Author: Carolyn Gordon
Publisher: American Mathematical Soc.
ISBN: 0821846515
Category : Mathematics
Languages : en
Pages : 363
Book Description
This volume is an outgrowth of the Sixth Workshop on Lie Theory and Geometry, held in the province of Cordoba, Argentina in November 2007. The representation theory and structure theory of Lie groups play a pervasive role throughout mathematics and physics. Lie groups are tightly intertwined with geometry and each stimulates developments in the other. The aim of this volume is to bring to a larger audience the mutually beneficial interaction between Lie theorists and geometers that animated the workshop. Two prominent themes of the representation theoretic articles are Gelfand pairs and the representation theory of real reductive Lie groups. Among the more geometric articles are an exposition of major recent developments on noncompact homogeneous Einstein manifolds and aspects of inverse spectral geometry presented in settings accessible to readers new to the area.
Publisher: American Mathematical Soc.
ISBN: 0821846515
Category : Mathematics
Languages : en
Pages : 363
Book Description
This volume is an outgrowth of the Sixth Workshop on Lie Theory and Geometry, held in the province of Cordoba, Argentina in November 2007. The representation theory and structure theory of Lie groups play a pervasive role throughout mathematics and physics. Lie groups are tightly intertwined with geometry and each stimulates developments in the other. The aim of this volume is to bring to a larger audience the mutually beneficial interaction between Lie theorists and geometers that animated the workshop. Two prominent themes of the representation theoretic articles are Gelfand pairs and the representation theory of real reductive Lie groups. Among the more geometric articles are an exposition of major recent developments on noncompact homogeneous Einstein manifolds and aspects of inverse spectral geometry presented in settings accessible to readers new to the area.
Lie Sphere Geometry
Author: Thomas E. Cecil
Publisher: Springer Science & Business Media
ISBN: 0387746552
Category : Mathematics
Languages : en
Pages : 214
Book Description
Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.
Publisher: Springer Science & Business Media
ISBN: 0387746552
Category : Mathematics
Languages : en
Pages : 214
Book Description
Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.
Geometry of Hypersurfaces
Author: Thomas E. Cecil
Publisher: Springer
ISBN: 1493932462
Category : Mathematics
Languages : en
Pages : 601
Book Description
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.
Publisher: Springer
ISBN: 1493932462
Category : Mathematics
Languages : en
Pages : 601
Book Description
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.
Tight and Taut Submanifolds
Author: Nicolaas Hendrik Kuiper
Publisher: Cambridge University Press
ISBN: 9780521620475
Category : Mathematics
Languages : en
Pages : 372
Book Description
First published in 1997, this book contains six in-depth articles on various aspects of the field of tight and taut submanifolds and concludes with an extensive bibliography of the entire field. The book is dedicated to the memory of Nicolaas H. Kuiper; the first paper is an unfinished but insightful survey of the field of tight immersions and maps written by Kuiper himself. Other papers by leading researchers in the field treat topics such as the smooth and polyhedral portions of the theory of tight immersions, taut, Dupin and isoparametric submanifolds of Euclidean space, taut submanifolds of arbitrary complete Riemannian manifolds, and real hypersurfaces in complex space forms with special curvature properties. Taken together these articles provide a comprehensive survey of the field and point toward several directions for future research.
Publisher: Cambridge University Press
ISBN: 9780521620475
Category : Mathematics
Languages : en
Pages : 372
Book Description
First published in 1997, this book contains six in-depth articles on various aspects of the field of tight and taut submanifolds and concludes with an extensive bibliography of the entire field. The book is dedicated to the memory of Nicolaas H. Kuiper; the first paper is an unfinished but insightful survey of the field of tight immersions and maps written by Kuiper himself. Other papers by leading researchers in the field treat topics such as the smooth and polyhedral portions of the theory of tight immersions, taut, Dupin and isoparametric submanifolds of Euclidean space, taut submanifolds of arbitrary complete Riemannian manifolds, and real hypersurfaces in complex space forms with special curvature properties. Taken together these articles provide a comprehensive survey of the field and point toward several directions for future research.
Handbook of Differential Geometry, Volume 1
Author: F.J.E. Dillen
Publisher: Elsevier
ISBN: 0080532837
Category : Mathematics
Languages : en
Pages : 1067
Book Description
In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.
Publisher: Elsevier
ISBN: 0080532837
Category : Mathematics
Languages : en
Pages : 1067
Book Description
In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.
Differential Geometry and Integrable Systems
Author: Martin A. Guest
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370
Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370
Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.
Fundamentals of Differential Geometry
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461205417
Category : Mathematics
Languages : en
Pages : 553
Book Description
This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER
Publisher: Springer Science & Business Media
ISBN: 1461205417
Category : Mathematics
Languages : en
Pages : 553
Book Description
This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER