Coupled Multiscale Simulation and Optimization in Nanoelectronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Coupled Multiscale Simulation and Optimization in Nanoelectronics PDF full book. Access full book title Coupled Multiscale Simulation and Optimization in Nanoelectronics by Michael Günther. Download full books in PDF and EPUB format.

Coupled Multiscale Simulation and Optimization in Nanoelectronics

Coupled Multiscale Simulation and Optimization in Nanoelectronics PDF Author: Michael Günther
Publisher: Springer
ISBN: 3662466724
Category : Computers
Languages : en
Pages : 574

Book Description
Designing complex integrated circuits relies heavily on mathematical methods and calls for suitable simulation and optimization tools. The current design approach involves simulations and optimizations in different physical domains (device, circuit, thermal, electromagnetic) and in a range of electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity, system functionality). COMSON was a Marie Curie Research Training Network created to meet these new scientific and training challenges by (a) developing new descriptive models that take these mutual dependencies into account, (b) combining these models with existing circuit descriptions in new simulation strategies and (c) developing new optimization techniques that will accommodate new designs. The book presents the main project results in the fields of PDAE modeling and simulation, model order reduction techniques and optimization, based on merging the know-how of three major European semiconductor companies with the combined expertise of university groups specialized in developing suitable mathematical models, numerical schemes and e-learning facilities. In addition, a common Demonstrator Platform for testing mathematical methods and approaches was created to assess whether they are capable of addressing the industry’s problems, and to educate young researchers by providing hands-on experience with state-of-the-art problems.

Coupled Multiscale Simulation and Optimization in Nanoelectronics

Coupled Multiscale Simulation and Optimization in Nanoelectronics PDF Author: Michael Günther
Publisher: Springer
ISBN: 3662466724
Category : Computers
Languages : en
Pages : 574

Book Description
Designing complex integrated circuits relies heavily on mathematical methods and calls for suitable simulation and optimization tools. The current design approach involves simulations and optimizations in different physical domains (device, circuit, thermal, electromagnetic) and in a range of electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity, system functionality). COMSON was a Marie Curie Research Training Network created to meet these new scientific and training challenges by (a) developing new descriptive models that take these mutual dependencies into account, (b) combining these models with existing circuit descriptions in new simulation strategies and (c) developing new optimization techniques that will accommodate new designs. The book presents the main project results in the fields of PDAE modeling and simulation, model order reduction techniques and optimization, based on merging the know-how of three major European semiconductor companies with the combined expertise of university groups specialized in developing suitable mathematical models, numerical schemes and e-learning facilities. In addition, a common Demonstrator Platform for testing mathematical methods and approaches was created to assess whether they are capable of addressing the industry’s problems, and to educate young researchers by providing hands-on experience with state-of-the-art problems.

Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis

Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis PDF Author: Sascha Baumanns
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832531912
Category : Mathematics
Languages : en
Pages : 209

Book Description
Today's most commonly used circuit models increasingly tend to lose their validity in circuit simulation due to rapid technological developments, miniaturization and increased complexity of integrated circuits. The starting point of this thesis was to tackle these challenges by refining the critical parts of the circuit by combining circuit simulation directly with distributed device models. The approach set out in this thesis couples partial differential equations for electromagnetic devices - modeled by Maxwell's equations -, to differential-algebraic equations, which describe basic circuit elements including memristors and the circuit's topology. First, Maxwell's equations are spatially discretized and a potential formulation is derived, the coupled system is then formulated as a differential-algebraic equation with a properly stated leading term and analyzed. Topological and modeling conditions are presented to guarantee the tractability index of these differential-algebraic equations to be no greater than two. Finally, local solvability, perturbation results and an algorithm to calculate consistent initializations are derived for a general class of differential-algebraic equations with a properly stated leading term having tractability index-2.

Model Reduction for Circuit Simulation

Model Reduction for Circuit Simulation PDF Author: Peter Benner
Publisher: Springer Science & Business Media
ISBN: 940070089X
Category : Technology & Engineering
Languages : en
Pages : 317

Book Description
Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).

Scientific Computing in Electrical Engineering SCEE 2008

Scientific Computing in Electrical Engineering SCEE 2008 PDF Author: Luis R.J. Costa
Publisher: Springer Science & Business Media
ISBN: 3642122949
Category : Technology & Engineering
Languages : en
Pages : 610

Book Description
This book is a collection of 65 selected papers presented at the 7th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Espoo, Finland, in 2008. The aim of the SCEE 2008 conference was to bring together scientists from academia and industry, e.g. mathematicians, electrical engineers, computer scientists, and physicists, with the goal of intensive discussions on industrially relevant mathematical problems, with an emphasis on modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems.This extensive reference work is divided into five parts: 1. Computational electromagnetics, 2. Circuit simulation, 3. Coupled problems, 4. Mathematical and computational methods, and 5. Model-order reduction. Each part starts with an general introduction followed by the actual papers.

Differential-Algebraic Equations: A Projector Based Analysis

Differential-Algebraic Equations: A Projector Based Analysis PDF Author: René Lamour
Publisher: Springer Science & Business Media
ISBN: 3642275559
Category : Mathematics
Languages : en
Pages : 667

Book Description
Differential algebraic equations (DAEs), including so-called descriptor systems, began to attract significant research interest in applied and numerical mathematics in the early 1980s, no more than about three decades ago. In this relatively short time, DAEs have become a widely acknowledged tool to model processes subjected to constraints, in order to simulate and to control processes in various application fields such as network simulation, chemical kinematics, mechanical engineering, system biology. DAEs and their more abstract versions in infinite-dimensional spaces comprise a great potential for future mathematical modeling of complex coupled processes. The purpose of the book is to expose the impressive complexity of general DAEs from an analytical point of view, to describe the state of the art as well as open problems and so to motivate further research to this versatile, extra-ordinary topic from a broader mathematical perspective. The book elaborates a new general structural analysis capturing linear and nonlinear DAEs in a hierarchical way. The DAE structure is exposed by means of special projector functions. Numerical integration issues and computational aspects are treated also in this context.

System Modeling and Optimization

System Modeling and Optimization PDF Author: Dietmar Hömberg
Publisher: Springer
ISBN: 3642360629
Category : Computers
Languages : en
Pages : 580

Book Description
This book is a collection of thoroughly refereed papers presented at the 25th IFIP TC 7 Conference on System Modeling and Optimization, held in Dresden, Germany, in September 2011. The 55 revised papers were carefully selected from numerous submissions. They are organized in the following topical sections: control of distributed parameter systems; stochastic optimization and control; stabilization, feedback, and model predictive control; flow control; shape and structural optimization; and applications and control of lumped parameter systems.

Progress in Differential-Algebraic Equations

Progress in Differential-Algebraic Equations PDF Author: Sebastian Schöps
Publisher: Springer
ISBN: 3662449269
Category : Mathematics
Languages : en
Pages : 211

Book Description
This book contains the proceedings of the 8th Workshop on Coupled Descriptor Systems held March 2013 in the Castle of Eringerfeld, Geseke in the neighborhood of Paderborn, Germany. It examines the wide range of current research topics in descriptor systems, including mathematical modeling, index analysis, wellposedness of problems, stiffness and different time-scales, cosimulation and splitting methods and convergence analysis. In addition, the book also presents applications from the automotive and circuit industries that show that descriptor systems provide challenging problems from the point of view of both theory and practice. The book contains nine papers and is organized into three parts: control, simulation, and model order reduction. It will serve as an ideal resource for applied mathematicians and engineers, in particular those from mechanics and electromagnetics, who work with coupled differential equations.

Differential-algebraic Systems: Analytical Aspects And Circuit Applications

Differential-algebraic Systems: Analytical Aspects And Circuit Applications PDF Author: Ricardo Riaza
Publisher: World Scientific
ISBN: 9814471801
Category : Mathematics
Languages : en
Pages : 345

Book Description
Differential-algebraic equations (DAEs) provide an essential tool for system modeling and analysis within different fields of applied sciences and engineering. This book addresses modeling issues and analytical properties of DAEs, together with some applications in electrical circuit theory.Beginning with elementary aspects, the author succeeds in providing a self-contained and comprehensive presentation of several advanced topics in DAE theory, such as the full characterization of linear time-varying equations via projector methods or the geometric reduction of nonlinear systems. Recent results on singularities are extensively discussed. The book also addresses in detail differential-algebraic models of electrical and electronic circuits, including index characterizations and qualitative aspects of circuit dynamics. In particular, the reader will find a thorough discussion of the state/semistate dichotomy in circuit modeling. The state formulation problem, which has attracted much attention in the engineering literature, is cleverly tackled here as a reduction problem on semistate models.

Scientific Computing in Electrical Engineering SCEE 2010

Scientific Computing in Electrical Engineering SCEE 2010 PDF Author: Bastiaan Michielsen
Publisher: Springer Science & Business Media
ISBN: 3642224539
Category : Mathematics
Languages : en
Pages : 441

Book Description
Selected from papers presented at the 8th Scientific Computation in Electrical Engineering conference in Toulouse in 2010, the contributions to this volume cover every angle of numerically modelling electronic and electrical systems, including computational electromagnetics, circuit theory and simulation and device modelling. On computational electromagnetics, the chapters examine cutting-edge material ranging from low-frequency electrical machine modelling problems to issues in high-frequency scattering. Regarding circuit theory and simulation, the book details the most advanced techniques for modelling networks with many thousands of components. Modelling devices at microscopic levels is covered by a number of fundamental mathematical physics papers, while numerous papers on model order reduction help engineers and systems designers to bring their modelling of industrial-scale systems within the reach of present-day computational power. Complementing these more specific papers, the volume also contains a selection of mathematical methods which can be used in any application domain.

Numerical Analysis of Nonlinear Partial Differential-algebraic Equations

Numerical Analysis of Nonlinear Partial Differential-algebraic Equations PDF Author: Michael Matthes
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832532781
Category : Mathematics
Languages : en
Pages : 191

Book Description
Various mathematical models in many application areas give rise to systems of so called partial or abstract differential-algebraic equations (ADAEs). A substantial mathematical treatment of nonlinear ADAEs is still at an initial stage.In this thesis two approaches for treating nonlinear ADAEs are presented. The first one represents an extension of an approach by Tischendorf for the treatment of a specific class of linear ADAEs to the nonlinear case. It is based on the Galerkin approach and the theory of monotone operators for evolution equations. Unique solvability of the ADAE and strong convergence of the Galerkin solutions is proven. Furthermore it is shown that this class of ADAEs has Perturbation Index 1 and at most ADAE Index 1. In the second approach we formulate two prototypes of coupled systems where a semi-explicit differential-algebraic equation is coupled to an infinite dimensional algebraic operator equation or an evolution equation. For both prototypes unique solvability, strong convergence of Galerkin solutions and a Perturbation Index 1 result is shown. Both prototypes can be applied to concrete coupled systems in circuit simulation relying on a new global solvability result for the nonlinear equations of the Modified Nodal Analysis under suitable topological assumptions.