Corrosion Behavior of Galvanized Steel Reinforcements in MSE Walls in the Presence of Soil Organics

Corrosion Behavior of Galvanized Steel Reinforcements in MSE Walls in the Presence of Soil Organics PDF Author: Claudia Aide Soriano Vazquez
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Long Term Corrosion of Reinforcing Strips in Mechanically Stabilized Earth Walls

Long Term Corrosion of Reinforcing Strips in Mechanically Stabilized Earth Walls PDF Author: Brandon Seth Berke
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: Mechanically stabilized earth (MSE) walls are a more advanced form of a retaining wall, often larger and able to hold back more backfill. This is achieved by reinforcing strips or meshes (most often galvanized steel) placed into the soil, which are held in place by friction. The strips mechanically stabilize the earth while undergoing tension. The wall is covered with concrete medallions that connect to the reinforcements. The medallions have only a secondary structural role in holding up the wall but provide cover that protects the soil from washing away. MSE walls are structures expected to have very long service lives (e.g. 100 years). Confirmation is needed that such durability can be achieved, especially to show that the progression of corrosion of the reinforcement is slow enough. Ten MSE walls around Florida were instrumented (electrical connections were made through the concrete covers to the buried elements) between 1996- 1998 and used to survey corrosion rates of galvanized strip or mesh soil reinforcements. Initial estimates of corrosion-related durability were obtained at that time, indicating a good prognosis for long term durability. The objective of the research in this thesis was to obtain additional indications of the durability of reinforcements in MSE walls in Florida so as to perform a more reliable projection of future performance. Corrosion behavior was measured at the same locations as the initial survey by electrochemical nondestructive tests and by destructive tests. The nondestructive testing consisted of half-cell potentials, polarization resistance measurements, and electrochemical impedance spectroscopy. Corrosion rates reported in this thesis are based upon polarization resistance measurements. The destructive testing consisted of soil extraction and hardware extraction. Hardware extraction enabled independent verification of estimates of electrochemical corrosion rate. Analysis of extracted soil verified that soil composition was within construction specifications. The data from the current survey were also used to further improve prediction of corrosion. The present series of evaluations confirm that the structures are performing as desired based upon the updated model projection of future corrosion.

Corrosion of Steel in MSE Walls Due to Deicers and Backfill Aggregates

Corrosion of Steel in MSE Walls Due to Deicers and Backfill Aggregates PDF Author: Dipesh Tajhya
Publisher:
ISBN:
Category : Aggregates (Building materials)
Languages : en
Pages : 570

Book Description
Mechanically Stabilized Earth (MSE) wall is a civil structure that has been used for various purposes e.g., supporting bridges, residential or commercial buildings, roadways, railroads etc. In general, MSE wall uses either metal strip, bar or geosynthetics materials as reinforcement. Roger et al. (2010) mentioned that an approximately 57% of the MSE wall constructed in U.S. utilize steel strips as the resources of reinforcement. The usage of metal steel strips is followed by usage of steel bar mats (24%) and geosynthetics grids (18%). Even though MSE walls are designed for a service life of 75 to 100 years, early complication has often been reported. Corrosion of the reinforced steel has been the major cause that afflicts the long-term performance of these walls. The deicing salts used on pavements to melt down snow is one of the major cause of corrosion of these reinforced steels. The aggressiveness of deicers in terms of corrosion of these reinforced steel is studied through the potentiodynamic polarization technique at various concentrations. This study aims to determine the corrosion behavior on galvanized steel and bare steel in presence of individual deicing salt or deicers e.g., sodium chloride, calcium chloride, magnesium chloride and potassium acetate at various (i.e., 0.25, 0.50 and 1.0 M) concentration. Subsequently, the surface morphology was analyzed by using Scanning Electron Microscopy (SEM) and the mineralogical composition was observed through X-Ray Diffraction (XRD). In addition, the corrosivity of two backfill aggregates, natural aggregate and recycled concrete aggregate, was compared. The result shows that the corrosion effect of deicers on reinforced steel depends on its chemical composition and concentration. The SEM imaging showed the presence of micro cracks on the surface of galvanized steel, resulting in pitting corrosion rather than general surficial corrosion. Comparing the corrosion rate of these deicers, the aggressiveness of these deicers on galvanized steel can be arranged in the following order: sodium chloride > calcium chloride > magnesium chloride > potassium acetate. Although sodium chloride was most aggressive for both the steel, the aggressiveness of these deicers on bare steel was different from that of galvanized steel and can be arranged in following order: sodium chloride > magnesium chloride > calcium chloride > potassium acetate. The pH and electrical resistivity of the natural and recycled aggregates were compared with standard provided by American Association of State Highway and Transportation Officials (AASHTO) and found to be non-corrosive. The corrosion rate of both the aggregates on galvanized and bare steel were inappreciable. While analyzing the corrosiveness of these two aggregates, recycled concrete aggregate was observed to be more aggressive than the natural aggregate.

Corrosion Effects of Cement Stabilized Backfill on Galvanized Steel Earth Reinforcements

Corrosion Effects of Cement Stabilized Backfill on Galvanized Steel Earth Reinforcements PDF Author: Derek V. Morris
Publisher:
ISBN:
Category : Reinforcing bars
Languages : en
Pages : 156

Book Description
Cement stabilization of backfill has been used for some time in mechanically stabilized earth type retaining walls. However, there has been no data on the corrosion life of galvanized steel reinforcement in this environment, which is intermediate in pH between normal soil and pure cement. Field observations had indicated a potential corrosion problem at a particular site in District 12. As a result of the test program conducted during this project, the following conclusions were made. First, cement addition to backfill in the usual quantities (i.e. 7% or more) raised the pH environment to values close to that of normal concrete. At these levels corrosion rates of zinc coatings were not significantly accelerated -- if anything, corrosion rates were less than for unstabilized fill. Second, very small amounts of cement addition, of the order of 1% to 4% producing pH values significantly less than 12, could cause limited acceleration of corrosion. It is, therefore, advisable to control minimum cement levels and to encourage efficient mixing. Third, elevated corrosion rates were associated primarily with the presence of inorganic ions, both for stabilized and unstabilized fill. In the case of the problem site in District 12, this appeared to be the result primarily of unusually high sulfate content in the fill. Fourth, the use of crushed concrete as backfill did not accelerate corrosion. This material, therefore, appears to be acceptable for this application.

The Corrosion Behavior of Galvanized Steel in Mechanically Stabilized Earth Wall Structures

The Corrosion Behavior of Galvanized Steel in Mechanically Stabilized Earth Wall Structures PDF Author: Juan Pedro Rossi
Publisher:
ISBN:
Category : Earthwork
Languages : en
Pages : 454

Book Description


Assessment of In-situ Corrosion Conditions at Nevada Mechanically Stabilized Earth Wall Sites

Assessment of In-situ Corrosion Conditions at Nevada Mechanically Stabilized Earth Wall Sites PDF Author: Nelson Pearson
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 572

Book Description
The inability of soil to provide sufficient tensile strength presents challenges for soils being used as a structural building material. However, it is possible to improve the structural performance with the inclusion of a reinforcing system. The development of these systems has been a major advancement of the civil engineering practice. Mechanically stabilized earth (MSE) wall systems typically consist of a: concrete facing panel, specified backfill, reinforcing elements, and the retained fill. The interaction of the backfill with the reinforcements, and the reinforcements with the facing panels, produces a system that when properly designed, can be a cost effective engineering solution. In Nevada there are over 150 MSE walls that have been constructed using metallic reinforcements (Thornley 2009). Corrosion of metallic elements a naturally occurring electrochemical process is irreversible an inevitable. The rate of metal loss (corrosion) is a function of the environmental conditions and metal type. For MSE walls key parameters include the backfill's: salt content, organic content, saturation level, as well as the metal type of the reinforcements. Nevada has two previous corrosion investigations, an extensive site investigation at I-515/ Flamingo Rd. and a statistical analysis of as-built soil records along with a preliminary investigation for I-15/ Cheyenne Blvd. These studies form the foundation for this investigation of in-situ corrosion conditions. Seven MSE wall sites were investigated using electrochemical backfill characterization and linear polarization resistance (LPR) corrosion rate monitoring. Evaluation of electrochemical backfill characteristics has resulted in the discovery of six sites that fail current NDOT/ AASHTO MSE wall backfill requirements. The in-situ soil samples collected and analyzed more than doubled the available data used to describe the corrosiveness of the backfill. Linear polarization resistance corrosion rates were obtained for more than 200 different elements. These data suggest that despite the aggressive nature of the backfill, most elements are preforming well and are below the anticipated rates. However, several elements were discovered with corrosion rates in excess of five times the design model. The use of the LPR corrosion monitoring has concluded that the conditions at I-15/ and Cheyenne Blvd. are equivalent to or worse than the conditions evaluated in 2004 at the I-515/ Flamingo Rd. complex. The discoveries at Flamingo Rd. led to remediation of the largest wall at the complex. Through the use of electrochemical backfill characteristics and LPR corrosion rates, the seven sites investigated have been ranked. The rankings are dependent on several factors such as backfill electrochemical conditions and comparison of corrosion rates data with design models. This study has confirmed that observations of conditions along the exterior of the wall are not sufficient when determining the condition of the soil reinforcements. Routine corrosion monitoring is required to monitor the depletion of the soil reinforcements and should be incorporated into a Long-term Corrosion Monitoring and Asset Management Plan (LCMAMP). It is anticipated that a program will be integrated into Nevada's current asset management systems. The development and implementation of LCMAMP, directly reflects the federal initiative for systematic detailed evaluation of critical assets, MAP-21.

Corrosion and Surface Chemistry of Metals

Corrosion and Surface Chemistry of Metals PDF Author: Dieter Landolt
Publisher: EPFL Press
ISBN: 9780849382338
Category : Science
Languages : en
Pages : 640

Book Description
Textbook; grad.

Geotechnical Engineering for Transportation Projects

Geotechnical Engineering for Transportation Projects PDF Author: American Society of Civil Engineers. Geo-Institute
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 1266

Book Description
GSP 126 contains 223 papers presented at Geo-Trans 2004, held in Los Angeles, California, July 27-31, 2004.

Soil Improvement and Ground Modification Methods

Soil Improvement and Ground Modification Methods PDF Author: Peter G. Nicholson
Publisher: Butterworth-Heinemann
ISBN: 0124078990
Category : Technology & Engineering
Languages : en
Pages : 474

Book Description
Written by an author with more than 25 years of field and academic experience, Soil Improvement and Ground Modification Methods explains ground improvement technologies for converting marginal soil into soil that will support all types of structures. Soil improvement is the alteration of any property of a soil to improve its engineering performance. Some sort of soil improvement must happen on every construction site. This combined with rapid urbanization and the industrial growth presents a huge dilemma to providing a solid structure at a competitive price. The perfect guide for new or practicing engineers, this reference covers projects involving soil stabilization and soil admixtures, including utilization of industrial waste and by-products, commercially available soil admixtures, conventional soil improvement techniques, and state-of-the-art testing methods. - Conventional soil improvement techniques and state-of-the-art testing methods - Methods for mitigating or removing the risk of liquefaction in the event of major vibrations - Structural elements for stabilization of new or existing construction industrial waste/by-products, commercially available soil - Innovative techniques for drainage, filtration, dewatering, stabilization of waste, and contaminant control and removal

Applied Metallurgy and Corrosion Control

Applied Metallurgy and Corrosion Control PDF Author: Amiya Kumar Lahiri
Publisher: Springer
ISBN: 9811046840
Category : Technology & Engineering
Languages : en
Pages : 558

Book Description
This book serves as a comprehensive resource on metals and materials selection for the petrochemical industrial sector. The petrochemical industry involves large scale investments, and to maintain profitability the plants are to be operated with minimum downtime and failure of equipment, which can also cause safety hazards. To achieve this objective proper selection of materials, corrosion control, and good engineering practices must be followed in both the design and the operation of plants. Engineers and professional of different disciplines involved in these activities are required to have some basic understanding of metallurgy and corrosion. This book is written with the objective of servings as a one-stop shop for these engineering professionals. The book first covers different metallic materials and their properties, metal forming processes, welding, and corrosion and corrosion control measures. This is followed by considerations in material selection and corrosion control in three major industrial sectors, oil & gas production, oil refinery, and fertilizers. The importance of pressure vessel codes as well as inspection and maintenance repair practices have also been highlighted. The book will be useful for technicians and entry level engineers in these industrial sectors. Additionally, the book may also be used as primary or secondary reading for graduate and professional coursework.