Frustrated Spin Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Frustrated Spin Systems PDF full book. Access full book title Frustrated Spin Systems by H. T. Diep. Download full books in PDF and EPUB format.

Frustrated Spin Systems

Frustrated Spin Systems PDF Author: H. T. Diep
Publisher: World Scientific
ISBN: 9814440744
Category : Science
Languages : en
Pages : 644

Book Description
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can OCo within a single book OCo obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so."

Frustrated Spin Systems

Frustrated Spin Systems PDF Author: H. T. Diep
Publisher: World Scientific
ISBN: 9814440744
Category : Science
Languages : en
Pages : 644

Book Description
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can OCo within a single book OCo obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so."

An Introduction to Quantum Spin Systems

An Introduction to Quantum Spin Systems PDF Author: John B. Parkinson
Publisher: Springer Science & Business Media
ISBN: 3642132898
Category : Science
Languages : en
Pages : 159

Book Description
The topic of lattice quantum spin systems is a fascinating and by now well established branch of theoretical physics. Based on a set of lectures, this book has a level of detail missing from others, and guides the reader through the fundamentals of the field.

Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems

Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems PDF Author: Laurens Vanderstraeten
Publisher: Springer
ISBN: 3319641913
Category : Science
Languages : en
Pages : 229

Book Description
This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.

Introduction to Frustrated Magnetism

Introduction to Frustrated Magnetism PDF Author: Claudine Lacroix
Publisher: Springer Science & Business Media
ISBN: 3642105890
Category : Science
Languages : en
Pages : 682

Book Description
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.

Frustrated Spin Systems (Third Edition)

Frustrated Spin Systems (Third Edition) PDF Author: Hung-the Diep
Publisher: World Scientific
ISBN: 9811214158
Category : Science
Languages : en
Pages : 750

Book Description
Frustrated spin systems have been first investigated five decades ago. Well-known examples include the Ising model on the antiferromagnetic triangular lattice studied by G H Wannier in 1950 and the Heisenberg helical structure discovered independently by A Yoshimori, J Villainn and T A Kaplan in 1959. However, extensive investigations on frustrated spin systems have really started with the concept of frustration introduced at the same time by G Toulouse and by J Villain in 1977 in the context of spin glasses. The frustration is generated by the competition of different kinds of interaction and/or by the lattice geometry. As a result, in the ground state all bonds are not fully satisfied. In frustrated Ising spin systems, a number of spins behave as free spins. In frustrated vector spin systems, the ground-state configuration is usually non-collinear. The ground state of frustrated spin systems is therefore highly degenerate and new induced symmetries give rise to unexpected behaviors at finite temperatures. Many properties of frustrated systems are still not well understood at present. Theoretically, recent studies shown in this book reveal that established theories, numerical simulations as well as experimental techniques have encountered many difficulties in dealing with frustrated systems. In some sense, frustrated systems provide an excellent testing ground for approximations and theories. Experimentally, more and more frustrated materials are discovered with interesting properties for applications.

Physics and Mathematics of Quantum Many-Body Systems

Physics and Mathematics of Quantum Many-Body Systems PDF Author: Hal Tasaki
Publisher: Springer Nature
ISBN: 3030412652
Category : Technology & Engineering
Languages : en
Pages : 534

Book Description
This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

The Theory of Open Quantum Systems

The Theory of Open Quantum Systems PDF Author: Heinz-Peter Breuer
Publisher: Oxford University Press, USA
ISBN: 9780198520634
Category : Mathematics
Languages : en
Pages : 648

Book Description
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.

Principles of Neutron Scattering from Condensed Matter

Principles of Neutron Scattering from Condensed Matter PDF Author:
Publisher: Oxford University Press, USA
ISBN: 0198862318
Category :
Languages : en
Pages : 512

Book Description
Neutron scattering is arguably the most powerful technique available for looking inside materials and seeing what the atoms are doing. This textbook provides a comprehensive and up-to-date account of the many different ways neutrons are being used to investigate the behaviour of atoms and molecules in bulk matter. It is written in a pedagogical style, and includes many examples and exercises. Every year, thousands of experiments are performed at neutron scattering facilities around the world, exploring phenomena in physics, chemistry, materials science, as well as in interdisciplinary areas such as biology, materials engineering, and cultural heritage. This book fulfils a need for a modern and pedagogical treatment of the principles behind the various different neutron techniques, in order to provide scientists with the essential formal tools to design their experiments and interpret the results. The book will be of particular interest to researchers using neutrons to study the atomic-scale structure and dynamics in crystalline solids, simple liquids and molecular fluids by diffraction techniques, including small-angle scattering and reflectometry, and by spectroscopic methods, ranging from conventional techniques for inelastic and quasielastic scattering to neutron spin-echo and Compton scattering. A comprehensive treatment of magnetic neutron scattering is given, including the many and diverse applications of polarized neutrons.

Journal of the Physical Society of Japan

Journal of the Physical Society of Japan PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 338

Book Description


Quantum Phase Transitions

Quantum Phase Transitions PDF Author: Subir Sachdev
Publisher: Cambridge University Press
ISBN: 113950021X
Category : Science
Languages : en
Pages : 521

Book Description
Describing the physical properties of quantum materials near critical points with long-range many-body quantum entanglement, this book introduces readers to the basic theory of quantum phases, their phase transitions and their observable properties. This second edition begins with a new section suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. It also contains several new chapters to cover important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at non-zero temperatures. Finally, a variety of more complex models are explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.