Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming PDF full book. Access full book title Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming by Mohit Tawarmalani. Download full books in PDF and EPUB format.

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming PDF Author: Mohit Tawarmalani
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492

Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming PDF Author: Mohit Tawarmalani
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492

Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming PDF Author: Jon Lee
Publisher: Springer Science & Business Media
ISBN: 1461419271
Category : Mathematics
Languages : en
Pages : 687

Book Description
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Disjunctive Programming

Disjunctive Programming PDF Author: Egon Balas
Publisher: Springer
ISBN: 3030001482
Category : Mathematics
Languages : en
Pages : 238

Book Description
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.

Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming

Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming PDF Author: Ivo Nowak
Publisher: Springer Science & Business Media
ISBN: 9783764372385
Category : Computers
Languages : en
Pages : 242

Book Description
Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.

Global Optimization

Global Optimization PDF Author: János D. Pintér
Publisher: Springer Science & Business Media
ISBN: 0387309276
Category : Mathematics
Languages : en
Pages : 559

Book Description
Optimization models based on a nonlinear systems description often possess multiple local optima. The objective of Global Optimization (GO) is to find the best possible solution of multiextremal problems. This volume illustrates the applicability of GO modeling techniques and solution strategies to real-world problems. Coverage extends to a broad range of applications, from agroecosystem management to robot design. Proposed solutions encompass a range of practical and viable methods.

Introduction to Global Optimization

Introduction to Global Optimization PDF Author: R. Horst
Publisher: Springer Science & Business Media
ISBN: 9780792367567
Category : Computers
Languages : en
Pages : 376

Book Description
A textbook for an undergraduate course in mathematical programming for students with a knowledge of elementary real analysis, linear algebra, and classical linear programming (simple techniques). Focuses on the computation and characterization of global optima of nonlinear functions, rather than the locally optimal solutions addressed by most books on optimization. Incorporates the theoretical, algorithmic, and computational advances of the past three decades that help solve globally multi-extreme problems in the mathematical modeling of real world systems. Annotation copyright by Book News, Inc., Portland, OR

Scatter Search

Scatter Search PDF Author: Manuel Laguna
Publisher: Springer Science & Business Media
ISBN: 146150337X
Category : Mathematics
Languages : en
Pages : 302

Book Description
The book Scatter Search by Manuel Laguna and Rafael Martí represents a long-awaited "missing link" in the literature of evolutionary methods. Scatter Search (SS)-together with its generalized form called Path Relinking-constitutes the only evolutionary approach that embraces a collection of principles from Tabu Search (TS), an approach popularly regarded to be divorced from evolutionary procedures. The TS perspective, which is responsible for introducing adaptive memory strategies into the metaheuristic literature (at purposeful level beyond simple inheritance mechanisms), may at first seem to be at odds with population-based approaches. Yet this perspective equips SS with a remarkably effective foundation for solving a wide range of practical problems. The successes documented by Scatter Search come not so much from the adoption of adaptive memory in the range of ways proposed in Tabu Search (except where, as often happens, SS is advantageously coupled with TS), but from the use of strategic ideas initially proposed for exploiting adaptive memory, which blend harmoniously with the structure of Scatter Search. From a historical perspective, the dedicated use of heuristic strategies both to guide the process of combining solutions and to enhance the quality of offspring has been heralded as a key innovation in evolutionary methods, giving rise to what are sometimes called "hybrid" (or "memetic") evolutionary procedures. The underlying processes have been introduced into the mainstream of evolutionary methods (such as genetic algorithms, for example) by a series of gradual steps beginning in the late 1980s.

Advances in Applied Mathematics and Global Optimization

Advances in Applied Mathematics and Global Optimization PDF Author: David Y. Gao
Publisher: Springer Science & Business Media
ISBN: 0387757147
Category : Mathematics
Languages : en
Pages : 542

Book Description
The articles that comprise this distinguished annual volume for the Advances in Mechanics and Mathematics series have been written in honor of Gilbert Strang, a world renowned mathematician and exceptional person. Written by leading experts in complementarity, duality, global optimization, and quantum computations, this collection reveals the beauty of these mathematical disciplines and investigates recent developments in global optimization, nonconvex and nonsmooth analysis, nonlinear programming, theoretical and engineering mechanics, large scale computation, quantum algorithms and computation, and information theory.

Global Optimization

Global Optimization PDF Author: Marco Locatelli
Publisher: SIAM
ISBN: 1611972671
Category : Mathematics
Languages : en
Pages : 439

Book Description
This volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.

Lectures on Global Optimization

Lectures on Global Optimization PDF Author: Thomas Frederick Coleman
Publisher: American Mathematical Soc.
ISBN: 0821844857
Category : Mathematics
Languages : en
Pages : 257

Book Description
A large number of mathematical models in many diverse areas of science and engineering have lead to the formulation of optimization problems where the best solution (globally optimal) is needed. This book covers a small subset of important topics in global optimization with emphasis on theoretical developments and scientific applications.