Convection Heat Transfer in Three-Dimensional Turbulent Separated PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Convection Heat Transfer in Three-Dimensional Turbulent Separated PDF full book. Access full book title Convection Heat Transfer in Three-Dimensional Turbulent Separated by . Download full books in PDF and EPUB format.

Convection Heat Transfer in Three-Dimensional Turbulent Separated

Convection Heat Transfer in Three-Dimensional Turbulent Separated PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The measurements and the simulation of convective heat transfer in separated flow have been a challenge to researchers for many years. Measurements have been limited to two-dimensional flow and simulations failed to predict accurately turbulent heat transfer in the separated and reattached flow region (prediction are higher than measurements by more than 50%). A coordinated experimental and numerical effort has been initiated under this grant for examining the momentum and thermal transport in three-dimensional separated and reattached flow in an effort to provide new measurements that can be used for benchmarking and for improving the simulation capabilities of 3-D convection in separated/reattached flow regime. High-resolution and non-invasive measurements techniques are developed and employed in this study to quantify the magnitude and the behavior of the three velocity components and the resulting convective heat transfer. In addition, simulation capabilities are developed and employed for improving the simulation of 3-D convective separated/reattached flow. Such basic measurements and simulation capabilities are needed for improving the design and performance evaluation of complex (3-D) heat exchanging equipment. Three-dimensional (3-D) convective air flow adjacent to backward-facing step in rectangular channel is selected for the experimental component of this study. This geometry is simple but it exhibits all the complexities that appear in any other separated/reattached flow, thus making the results generated in this study applicable to any other separated and reattached flow. Boundary conditions, inflow, outflow, and wall thermal treatment in this geometry can be well measured and controlled. The geometry can be constructed with optical access for non-intrusive measurements of the flow and thermal fields. A three-component laser Doppler velocimeter (LDV) is employed to measure simultaneously the three-velocity components and their turbulent fluctuations. Infrared thermography is utilized to measure the wall temperature and that information is used to determine the local convective heat transfer coefficient. FLUENT - CFD code is used as the platform in the simulation effort and User Defined Functions are developed for incorporating advanced turbulence models into this simulation code. Predictions of 3-D turbulent convection in separated flow, using the developed simulation capabilities under this grant, compared well with measured results. Results from the above research can be found in the seventeen refereed journal articles, and thirteen refereed publications and presentations in conference proceedings that have been published by the PI during the this grant period. The research effort is still going on and several publications are being prepared for reporting recent results.

Convection Heat Transfer in Three-Dimensional Turbulent Separated

Convection Heat Transfer in Three-Dimensional Turbulent Separated PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The measurements and the simulation of convective heat transfer in separated flow have been a challenge to researchers for many years. Measurements have been limited to two-dimensional flow and simulations failed to predict accurately turbulent heat transfer in the separated and reattached flow region (prediction are higher than measurements by more than 50%). A coordinated experimental and numerical effort has been initiated under this grant for examining the momentum and thermal transport in three-dimensional separated and reattached flow in an effort to provide new measurements that can be used for benchmarking and for improving the simulation capabilities of 3-D convection in separated/reattached flow regime. High-resolution and non-invasive measurements techniques are developed and employed in this study to quantify the magnitude and the behavior of the three velocity components and the resulting convective heat transfer. In addition, simulation capabilities are developed and employed for improving the simulation of 3-D convective separated/reattached flow. Such basic measurements and simulation capabilities are needed for improving the design and performance evaluation of complex (3-D) heat exchanging equipment. Three-dimensional (3-D) convective air flow adjacent to backward-facing step in rectangular channel is selected for the experimental component of this study. This geometry is simple but it exhibits all the complexities that appear in any other separated/reattached flow, thus making the results generated in this study applicable to any other separated and reattached flow. Boundary conditions, inflow, outflow, and wall thermal treatment in this geometry can be well measured and controlled. The geometry can be constructed with optical access for non-intrusive measurements of the flow and thermal fields. A three-component laser Doppler velocimeter (LDV) is employed to measure simultaneously the three-velocity components and their turbulent fluctuations. Infrared thermography is utilized to measure the wall temperature and that information is used to determine the local convective heat transfer coefficient. FLUENT - CFD code is used as the platform in the simulation effort and User Defined Functions are developed for incorporating advanced turbulence models into this simulation code. Predictions of 3-D turbulent convection in separated flow, using the developed simulation capabilities under this grant, compared well with measured results. Results from the above research can be found in the seventeen refereed journal articles, and thirteen refereed publications and presentations in conference proceedings that have been published by the PI during the this grant period. The research effort is still going on and several publications are being prepared for reporting recent results.

Three Dimensional Laminar and Turbulent Convection in Separated Flow

Three Dimensional Laminar and Turbulent Convection in Separated Flow PDF Author: Magesh Thiruvengadam
Publisher:
ISBN:
Category : Bifurcation theory
Languages : en
Pages : 364

Book Description
"Three-dimensional laminar and turbulent separated flow and heat transfer in plane symmetric sudden expansion and plane backward facing step is examined in this dissertation. In Papers I, II, and III, simulations of 3-D laminar forced convection in plane symmetric expansion is studied...In Paper IV, 3-D turbulent flow measurements using Laser Doppler Velocimeter are made in a backward facing step flow and the three velocity components and the Reynolds stresses are measured in the separated and redeveloping flow region...In Paper V, the 2-D behavior of a thin film that is shear driven by turbulent air flow is simulated"--Abstract, leaf iv.

Measurement and Control of Heat Transfer in Steady and Unsteady Turbulent Separated Flow

Measurement and Control of Heat Transfer in Steady and Unsteady Turbulent Separated Flow PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Book Description
The turbulence structure of convective heat transfer was studied experimentally in complex three- dimensional and separated turbulent boundary layers. Three test cases whose fluid dynamics have been well documented were examined. In case 1, time resolved surface heat transfer was measured in the nose region of a wing-body junction formed by a wing and a flat plate. Mean, statistical and spectral characteristics of the surface heat transfer are reported. The effects of wing shape were investigated by measuring the surface heat transfer in the nose region of a modified NACA 0020, a streamlined cylinder shape and NACA 0015. The effectiveness of a flow control device to reduce surface heat transfer is reported. In case 2, simultaneous surface heat flux and temperature profiles were measured at 11 locations in the spatially-developing pressure-driven three-dimensional turbulent boundary layer upstream of the wing-body junction. In case 3, simultaneous surface heat flux and temperature profiles were measured at 18 stream-wise locations in a mean 2-dimensional adverse-pressure gradient separating turbulent boundary layer. Mean, statistical and spectral heat flux and temperature data are reported. Mean ejection frequencies, turbulence length scales, inclination angles of the turbulence structure. and coherency between the inner and outer regions of the flow were examined from these results. Several useful correlations between surface heat transfer and velocity are reported.

A Review of High-speed, Convective, Heat-transfer Computation Methods

A Review of High-speed, Convective, Heat-transfer Computation Methods PDF Author: Michael E. Tauber
Publisher:
ISBN:
Category : Aerodynamic heating
Languages : en
Pages : 44

Book Description


An Experimental Investigation 0f Heat Transfer in Three-Dimensional and Separating Turbulent Boundary Layers

An Experimental Investigation 0f Heat Transfer in Three-Dimensional and Separating Turbulent Boundary Layers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 495

Book Description
The turbulence structure of convective beat transfer was studied experimentally in complex three-dimensional and separating turbulent boundary layers. Three test cases whose fluid dynamics have been well documented were examined. In case 1, time- and spatially-resolved surface heat transfer was measured in the nose region of a wing-body junction formed by a wing and a flat plate. Both the wing and the endwall were heated and held at a constant uniform temperature 20 C above ambient temperature. Heat flux rates were increased up to a factor of 3 over the heat flux rates in the approach boundary layer. The rms of the heat flux fluctuations were as high as 25% of the mean heat flux in the vortex-dominated nose region. Away from the wing, upstream of the time-averaged vortex center, augmentation in the heat flux is due to increased turbulent mixing caused by large-scale unsteadiness of the vortex. Adjacent to the wing the augmentation in heat flux is due to a change in the mean velocity field. In case 2, simultaneous surface heat flux and temperature profiles were measured at 8 locations in the spatially-developing pressure-driven three-dimensional turbulent boundary layer upstream of a wing-body junction. Mean heat transfer was decreased 10% by three-dimensionality. The turbulent Prandtl number in the near-wall region of logarithmic temperature variation was approximately 0.9 at all measurement locations in the three-dimensional boundary layer. Profiles of the skewness factor of temperature fluctuations and conditionally-averaged temperature signals during a sweep/ejection event suggest that the strength of ejections of hot fluid from the near-wall region are decreased by three-dimensionality.

Computation of Three Dimensional Turbulent Mixed Convection Boundary Layers

Computation of Three Dimensional Turbulent Mixed Convection Boundary Layers PDF Author: Bahram Afshari
Publisher:
ISBN:
Category :
Languages : en
Pages : 186

Book Description


An Experimental Investigation of Heat Transfer in Three-dimensional and Separating Turbulent Boundary Layers

An Experimental Investigation of Heat Transfer in Three-dimensional and Separating Turbulent Boundary Layers PDF Author: Douglas J. Lewis
Publisher:
ISBN:
Category :
Languages : en
Pages : 906

Book Description


Turbulence, Heat, and Mass Transfer 1

Turbulence, Heat, and Mass Transfer 1 PDF Author: Kemal Hanjalić
Publisher: Begell House Publishers
ISBN: 9781567000405
Category : Technology & Engineering
Languages : en
Pages : 580

Book Description
Over 90 papers presented, from turbulence structure to computation of complex flows, and heat and mass transfer.

Turbulent Forced Convection in Channels and Bundles

Turbulent Forced Convection in Channels and Bundles PDF Author: Sadık Kakaç
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 564

Book Description


Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion

Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion PDF Author: D. Brian Spalding
Publisher: Elsevier
ISBN: 1483160661
Category : Technology & Engineering
Languages : en
Pages : 445

Book Description
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbulence. Arguments on the universality of the models of turbulence and the problems that are associated with combustion engineering are clarified. The text notes the importance of combustion science as well as the problems associated with it. Mathematical computations are also presented in determining turbulent flows in different environments, including on curved pipes, curved ducts, and rotating ducts. These calculations are presented to further strengthen the claims of Professor Spalding in this discipline. The book is a great find for those who are interested in studying thermodynamics.