Author: Stefan Enoch
Publisher: Springer
ISBN: 364228079X
Category : Science
Languages : en
Pages : 331
Book Description
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
Plasmonics
Author: Stefan Enoch
Publisher: Springer
ISBN: 364228079X
Category : Science
Languages : en
Pages : 331
Book Description
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
Publisher: Springer
ISBN: 364228079X
Category : Science
Languages : en
Pages : 331
Book Description
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
Electromagnetic Theory of Gratings
Author: R. Petit
Publisher: Springer Science & Business Media
ISBN: 3642815006
Category : Science
Languages : en
Pages : 297
Book Description
When I was a student, in the early fifties, the properties of gratings were generally explained according to the scalar theory of optics. The grating formula (which pre dicts the diffraction angles for a given angle of incidence) was established, exper imentally verified, and intensively used as a source for textbook problems. Indeed those grating properties, we can call optical properties, were taught'in a satisfac tory manner and the students were able to clearly understand the diffraction and dispersion of light by gratings. On the other hand, little was said about the "energy properties", i. e. , about the prediction of efficiencies. Of course, the existence of the blaze effect was pointed out, but very frequently nothing else was taught about the efficiency curves. At most a good student had to know that, for an eche lette grating, the efficiency in a given order can approach unity insofar as the diffracted wave vector can be deduced from the incident one by a specular reflexion on the large facet. Actually this rule of thumb was generally sufficient to make good use of the optical gratings available about thirty years ago. Thanks to the spectacular improvements in grating manufacture after the end of the second world war, it became possible to obtain very good gratings with more and more lines per mm. Nowadays, in gratings used in the visible region, a spacing small er than half a micron is common.
Publisher: Springer Science & Business Media
ISBN: 3642815006
Category : Science
Languages : en
Pages : 297
Book Description
When I was a student, in the early fifties, the properties of gratings were generally explained according to the scalar theory of optics. The grating formula (which pre dicts the diffraction angles for a given angle of incidence) was established, exper imentally verified, and intensively used as a source for textbook problems. Indeed those grating properties, we can call optical properties, were taught'in a satisfac tory manner and the students were able to clearly understand the diffraction and dispersion of light by gratings. On the other hand, little was said about the "energy properties", i. e. , about the prediction of efficiencies. Of course, the existence of the blaze effect was pointed out, but very frequently nothing else was taught about the efficiency curves. At most a good student had to know that, for an eche lette grating, the efficiency in a given order can approach unity insofar as the diffracted wave vector can be deduced from the incident one by a specular reflexion on the large facet. Actually this rule of thumb was generally sufficient to make good use of the optical gratings available about thirty years ago. Thanks to the spectacular improvements in grating manufacture after the end of the second world war, it became possible to obtain very good gratings with more and more lines per mm. Nowadays, in gratings used in the visible region, a spacing small er than half a micron is common.
Recent Advances in Nanophotonics
Author: Mojtaba Kahrizi
Publisher: BoD – Books on Demand
ISBN: 183962843X
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
This volume brings together several recent research articles in the field of nanophotonics. The editors have arranged the chapters in three main parts: quantum devices, photonic devices, and semiconductor devices. The chapters cover a wide variety of scopes in those areas including principles of plasmonic, SPR, LSPR and their applications, graphene-based nanophotonic devices, generation of entangled photon and quantum dots, perovskite solar cells, photo-detachment and photoionization of two-electrons systems, diffusion and intermixing of atoms in semiconductor crystals, lattice and molecular elastic and inelastic scattering including surface-enhanced Raman Scattering and their applications. It is our sincerest hope that science and engineering students and researchers could benefit from the new ideas and recent advances in the field that are covered in this book.
Publisher: BoD – Books on Demand
ISBN: 183962843X
Category : Technology & Engineering
Languages : en
Pages : 174
Book Description
This volume brings together several recent research articles in the field of nanophotonics. The editors have arranged the chapters in three main parts: quantum devices, photonic devices, and semiconductor devices. The chapters cover a wide variety of scopes in those areas including principles of plasmonic, SPR, LSPR and their applications, graphene-based nanophotonic devices, generation of entangled photon and quantum dots, perovskite solar cells, photo-detachment and photoionization of two-electrons systems, diffusion and intermixing of atoms in semiconductor crystals, lattice and molecular elastic and inelastic scattering including surface-enhanced Raman Scattering and their applications. It is our sincerest hope that science and engineering students and researchers could benefit from the new ideas and recent advances in the field that are covered in this book.