Construction and Decoding of Codes on Finite Fields and Finite Geometries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Construction and Decoding of Codes on Finite Fields and Finite Geometries PDF full book. Access full book title Construction and Decoding of Codes on Finite Fields and Finite Geometries by Li Zhang. Download full books in PDF and EPUB format.

Construction and Decoding of Codes on Finite Fields and Finite Geometries

Construction and Decoding of Codes on Finite Fields and Finite Geometries PDF Author: Li Zhang
Publisher:
ISBN: 9781124319117
Category :
Languages : en
Pages :

Book Description
In this doctoral dissertation, two constructions of binary low-density parity-check (LDPC) codes with quasi-cyclic (QC) structures are presented. A general construction of RC-constrained arrays of circulant permutation matrices is introduced, then two specific construction methods based on Latin squares and cyclic subgroups are presented. Array masking is also proposed to improve the waterfall-region performance of the QC-LDPC codes. Also, by analyzing the parity check matrices of these codes, combinatorial expressions for their ranks and dimensions are derived. Experimental results show that, with iterative decoding algorithms, the constructed codes perform very well over both the additive white Gaussian noise (AWGN) and the binary erasure channels (BEC). Also presented in this dissertation are constructions of QC-LDPC codes based on two special classes of balanced incomplete block designs (BIBDs) derived by Bose. Codes are constructed for both the AWGN channel and the binary burst erasure channel (BBEC). Experimental results show that the codes constructed perform well not only over these two types of channels but also over the BEC. Finally, a two stage iterative decoding is presented to decode a class of cyclic Euclidean geometry codes. By exploiting the inherent geometry structure of the codes and avoiding the degrading effect of short cycles, the proposed algorithm provides good decoding performance of the codes.

Construction and Decoding of Codes on Finite Fields and Finite Geometries

Construction and Decoding of Codes on Finite Fields and Finite Geometries PDF Author: Li Zhang
Publisher:
ISBN: 9781124319117
Category :
Languages : en
Pages :

Book Description
In this doctoral dissertation, two constructions of binary low-density parity-check (LDPC) codes with quasi-cyclic (QC) structures are presented. A general construction of RC-constrained arrays of circulant permutation matrices is introduced, then two specific construction methods based on Latin squares and cyclic subgroups are presented. Array masking is also proposed to improve the waterfall-region performance of the QC-LDPC codes. Also, by analyzing the parity check matrices of these codes, combinatorial expressions for their ranks and dimensions are derived. Experimental results show that, with iterative decoding algorithms, the constructed codes perform very well over both the additive white Gaussian noise (AWGN) and the binary erasure channels (BEC). Also presented in this dissertation are constructions of QC-LDPC codes based on two special classes of balanced incomplete block designs (BIBDs) derived by Bose. Codes are constructed for both the AWGN channel and the binary burst erasure channel (BBEC). Experimental results show that the codes constructed perform well not only over these two types of channels but also over the BEC. Finally, a two stage iterative decoding is presented to decode a class of cyclic Euclidean geometry codes. By exploiting the inherent geometry structure of the codes and avoiding the degrading effect of short cycles, the proposed algorithm provides good decoding performance of the codes.

Geometries, Codes and Cryptography

Geometries, Codes and Cryptography PDF Author: G. Longo
Publisher: Springer
ISBN: 3709128382
Category : Computers
Languages : en
Pages : 230

Book Description
The general problem studied by information theory is the reliable transmission of information through unreliable channels. Channels can be unreliable either because they are disturbed by noise or because unauthorized receivers intercept the information transmitted. In the first case, the theory of error-control codes provides techniques for correcting at least part of the errors caused by noise. In the second case cryptography offers the most suitable methods for coping with the many problems linked with secrecy and authentication. Now, both error-control and cryptography schemes can be studied, to a large extent, by suitable geometric models, belonging to the important field of finite geometries. This book provides an update survey of the state of the art of finite geometries and their applications to channel coding against noise and deliberate tampering. The book is divided into two sections, "Geometries and Codes" and "Geometries and Cryptography". The first part covers such topics as Galois geometries, Steiner systems, Circle geometry and applications to algebraic coding theory. The second part deals with unconditional secrecy and authentication, geometric threshold schemes and applications of finite geometry to cryptography. This volume recommends itself to engineers dealing with communication problems, to mathematicians and to research workers in the fields of algebraic coding theory, cryptography and information theory.

Algebraic Geometry Codes: Advanced Chapters

Algebraic Geometry Codes: Advanced Chapters PDF Author: Michael Tsfasman
Publisher: American Mathematical Soc.
ISBN: 1470448653
Category : Coding theory
Languages : en
Pages : 453

Book Description
Algebraic Geometry Codes: Advanced Chapters is devoted to the theory of algebraic geometry codes, a subject related to local_libraryBook Catalogseveral domains of mathematics. On one hand, it involves such classical areas as algebraic geometry and number theory; on the other, it is connected to information transmission theory, combinatorics, finite geometries, dense packings, and so on. The book gives a unique perspective on the subject. Whereas most books on coding theory start with elementary concepts and then develop them in the framework of coding theory itself within, this book systematically presents meaningful and important connections of coding theory with algebraic geometry and number theory. Among many topics treated in the book, the following should be mentioned: curves with many points over finite fields, class field theory, asymptotic theory of global fields, decoding, sphere packing, codes from multi-dimensional varieties, and applications of algebraic geometry codes. The book is the natural continuation of Algebraic Geometric Codes: Basic Notions by the same authors. The concise exposition of the first volume is included as an appendix.

Coding Theory and Algebraic Geometry

Coding Theory and Algebraic Geometry PDF Author: Henning Stichtenoth
Publisher: Springer
ISBN: 3540472673
Category : Mathematics
Languages : en
Pages : 235

Book Description
About ten years ago, V.D. Goppa found a surprising connection between the theory of algebraic curves over a finite field and error-correcting codes. The aim of the meeting "Algebraic Geometry and Coding Theory" was to give a survey on the present state of research in this field and related topics. The proceedings contain research papers on several aspects of the theory, among them: Codes constructed from special curves and from higher-dimensional varieties, Decoding of algebraic geometric codes, Trace codes, Exponen- tial sums, Fast multiplication in finite fields, Asymptotic number of points on algebraic curves, Sphere packings.

Introduction to Coding Theory and Algebraic Geometry

Introduction to Coding Theory and Algebraic Geometry PDF Author: J. van Lint
Publisher: Springer Science & Business Media
ISBN: 9783764322304
Category : Science
Languages : en
Pages : 92

Book Description
These notes are based on lectures given in the semmar on "Coding Theory and Algebraic Geometry" held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course.

Algebraic Geometric Codes: Basic Notions

Algebraic Geometric Codes: Basic Notions PDF Author: Michael A. Tsfasman
Publisher: American Mathematical Soc.
ISBN: 0821843060
Category : Computers
Languages : en
Pages : 362

Book Description
The book is devoted to the theory of algebraic geometric codes, a subject formed on the border of several domains of mathematics. on one side there are such classical areas as algebraic geometry and number theory; on the other, information transmission theory, combinatorics, finite geometries, dense packings, etc. The authors give a unique perspective on the subject. Whereas most books on coding theory build up coding theory from within, starting from elementary concepts and almostalways finishing without reaching a certain depth, this book constantly looks for interpretations that connect coding theory to algebraic geometry and number theory. There are no prerequisites other than a standard algebra graduate course. The first two chapters of the book can serve as anintroduction to coding theory and algebraic geometry respectively. Special attention is given to the geometry of curves over finite fields in the third chapter. Finally, in the last chapter the authors explain relations between all of these: the theory of algebraic geometric codes.

Fundamentals of Classical and Modern Error-Correcting Codes

Fundamentals of Classical and Modern Error-Correcting Codes PDF Author: Shu Lin
Publisher: Cambridge University Press
ISBN: 1316512622
Category : Computers
Languages : en
Pages : 843

Book Description
An accessible textbook that uses step-by-step explanations, relatively easy mathematics and numerous examples to aid student understanding.

Finite Fields with Applications to Coding Theory, Cryptography and Related Areas

Finite Fields with Applications to Coding Theory, Cryptography and Related Areas PDF Author: Gary L. Mullen
Publisher: Springer Science & Business Media
ISBN: 3642594352
Category : Mathematics
Languages : en
Pages : 345

Book Description
The Sixth International Conference on Finite Fields and Applications, Fq6, held in the city of Oaxaca, Mexico, from May 21-25, 2001, continued a series of biennial international conferences on finite fields. This volume documents the steadily increasing interest in this topic. Finite fields are an important tool in discrete mathematics and its applications cover algebraic geometry, coding theory, cryptology, design theory, finite geometries, and scientific computation, among others. An important feature is the interplay between theory and applications which has led to many new perspectives in research on finite fields and other areas. This interplay has been emphasized in this series of conferences and certainly was reflected in Fq6. This volume offers up-to-date original research papers by leading experts in the area.

Finite Fields and their Applications

Finite Fields and their Applications PDF Author: James A. Davis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110621738
Category : Mathematics
Languages : en
Pages : 214

Book Description
The volume covers wide-ranging topics from Theory: structure of finite fields, normal bases, polynomials, function fields, APN functions. Computation: algorithms and complexity, polynomial factorization, decomposition and irreducibility testing, sequences and functions. Applications: algebraic coding theory, cryptography, algebraic geometry over finite fields, finite incidence geometry, designs, combinatorics, quantum information science.

Decoding of algebraic geometry codes and the use of neural networks for finite field

Decoding of algebraic geometry codes and the use of neural networks for finite field PDF Author:
Publisher:
ISBN:
Category :
Languages : pt-BR
Pages :

Book Description
Este trabalho propõe um algoritmo para decodificação de códigos de geometria algébrica. Usando as propriedades geométricas da curva que define um código de Goppa com distância projetada d, método permite decodificar até [d 1/ 2] erros em palavra recebida, sem esforço computacional adicional. As curvas de F.K. Schimdt são usada para construir uma nova classe de códigos de geometria algébrica, algumas propriedades destes novos códigos são apresentadas. Redes neurais não ortodoxas do tipo feedforward e não treinadas são usadas para construir circuitos que permitem calcular logaritmos de Zech eficientemente e, portanto, realizar aritmética em corpos finitos sem uso de tabelas.