Constraining Dark Matter Physics with Cosmological Simulations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Constraining Dark Matter Physics with Cosmological Simulations PDF full book. Access full book title Constraining Dark Matter Physics with Cosmological Simulations by Oliver D. Elbert. Download full books in PDF and EPUB format.

Constraining Dark Matter Physics with Cosmological Simulations

Constraining Dark Matter Physics with Cosmological Simulations PDF Author: Oliver D. Elbert
Publisher:
ISBN: 9780355311112
Category :
Languages : en
Pages : 111

Book Description
Dark Matter (DM) accounts for the vast majority of mass in the universe, but the particle identity of dark matter remains a mystery. Uncovering the fundamental nature of DM remains one of the greatest challenges facing modern physics. Because the only information about DM comes from astrophysical observations, these are the best sources to constrain models. Dwarf galaxies present an especially tantalizing regime to investigate dark physics, as they have the highest ratio of dark to luminous matter and therefore will be most affected by differences between DM models. Additionally, this is precisely the scale where generic dark matter theories have the most difficulty reproducing astronomical observations, leading to the missing satellites, core-cusp and too-big-to-fail (TBTF) problems.A particular class of models with nuclear scale self-interactions (called SIDM) has emerged as a promising candidate. SIDM naturally forms cored halos, which may alleviate both the core-cusp and TBTF problems. However, at larger scales the the interplay between SIDM halos and the galaxies residing in them is poorly understood, complicating this picture greatly. In this thesis I present numerical simulations of SIDM and CDM halos investigating these issues. I show that at dwarf scales SIDM cross sections as small as 0.5cm2 g--1 solve the TBTF and core-cusp problems, and that cross sections 2 orders of magnitude larger are not ruled out. I have also embedded gravitational potentials that approximate realistic galaxies in simulations of larger haloes in order to test the impact of galaxy formation on SIDM halos. These simulations show that SIDM is indistinguishable from CDM in systems where the galaxy dominates the central region, but in galaxies with higher mass-to-light ratios or less centrally concentrated baryons it is possible to constrain SIDM cross sections. In the galaxy cluster regime I show that an SIDM cross section of $0.1-0.2 cm2 g --1 is preferred to CDM or other SIDM cross sections.

Constraining Dark Matter Physics with Cosmological Simulations

Constraining Dark Matter Physics with Cosmological Simulations PDF Author: Oliver D. Elbert
Publisher:
ISBN: 9780355311112
Category :
Languages : en
Pages : 111

Book Description
Dark Matter (DM) accounts for the vast majority of mass in the universe, but the particle identity of dark matter remains a mystery. Uncovering the fundamental nature of DM remains one of the greatest challenges facing modern physics. Because the only information about DM comes from astrophysical observations, these are the best sources to constrain models. Dwarf galaxies present an especially tantalizing regime to investigate dark physics, as they have the highest ratio of dark to luminous matter and therefore will be most affected by differences between DM models. Additionally, this is precisely the scale where generic dark matter theories have the most difficulty reproducing astronomical observations, leading to the missing satellites, core-cusp and too-big-to-fail (TBTF) problems.A particular class of models with nuclear scale self-interactions (called SIDM) has emerged as a promising candidate. SIDM naturally forms cored halos, which may alleviate both the core-cusp and TBTF problems. However, at larger scales the the interplay between SIDM halos and the galaxies residing in them is poorly understood, complicating this picture greatly. In this thesis I present numerical simulations of SIDM and CDM halos investigating these issues. I show that at dwarf scales SIDM cross sections as small as 0.5cm2 g--1 solve the TBTF and core-cusp problems, and that cross sections 2 orders of magnitude larger are not ruled out. I have also embedded gravitational potentials that approximate realistic galaxies in simulations of larger haloes in order to test the impact of galaxy formation on SIDM halos. These simulations show that SIDM is indistinguishable from CDM in systems where the galaxy dominates the central region, but in galaxies with higher mass-to-light ratios or less centrally concentrated baryons it is possible to constrain SIDM cross sections. In the galaxy cluster regime I show that an SIDM cross section of $0.1-0.2 cm2 g --1 is preferred to CDM or other SIDM cross sections.

Illuminating Dark Matter

Illuminating Dark Matter PDF Author: Rouven Essig
Publisher: Springer Nature
ISBN: 3030315932
Category : Science
Languages : en
Pages : 168

Book Description
Based on a Simons Symposium held in 2018, the proceedings in this volume focus on the theoretical, numerical, and observational quest for dark matter in the universe. Present ground-based and satellite searches have so far severely constrained the long-proposed theoretical models for dark matter. Nevertheless, there is continuously growing astrophysical and cosmological evidence for its existence. To address present and future developments in the field, novel ideas, theories, and approaches are called for. The symposium gathered together a new generation of experts pursuing innovative, more complex theories of dark matter than previously considered.This is being done hand in hand with experts in numerical astrophysical simulations and observational techniques—all paramount for deciphering the nature of dark matter. The proceedings volume provides coverage of the most advanced stage of understanding dark matter in various new frameworks. The collection will be useful for graduate students, postdocs, and investigators interested in cutting-edge research on one of the biggest mysteries of our universe.

Dark Matter and Dark Energy

Dark Matter and Dark Energy PDF Author: Sabino Matarrese
Publisher: Springer Science & Business Media
ISBN: 9048186854
Category : Science
Languages : en
Pages : 413

Book Description
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.

Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics

Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics PDF Author: Masato Shirasaki
Publisher: Springer
ISBN: 9812877967
Category : Science
Languages : en
Pages : 144

Book Description
In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced. For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada–France–Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3–4 % in upcoming surveys with sky coverage of 20,000 square degrees. On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.

From Cosmological Simulations to Dark Matter Detection

From Cosmological Simulations to Dark Matter Detection PDF Author: Luis Arturo Nunez de Villavicencio Castine
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This interdisciplinary thesis addresses spiral galaxy formation and dark matter phenomenology as well as its detection by the ANTARES neutrino telescope. A suite of high-resolution cosmological hydrodynamics simulations, with theadaptive mesh refinement code RAMSES, of the same galaxy, is performed using different modellings of stellar formation (Kennicut law (KS) versus gravo-turbulent criteria (multiFF)) and supernovae feed back (delayed cooling (DC) versus mechanical feedback (ME)). The results on the morphology and the properties of the galaxies are compared to observational constraints and high light the impact of baryonic physics on a spiral galaxy. The most elaborated scenarios (multi FF+DC or multi FF+ME) are clearly favoured and give rise to more realistic stellar mass and disc morphology.The resulting dark matter distributions in halos are also analyzed and compared showing some significant differences. The understanding of baryonic physics is crucial to understand the dark matter distribution. Namely, it is specifically modified and contracted by the baryonic potential of each simulation with a determining impact on direct and indirect dark matter detection. Moreover,we also use those informations about the dark matter to probe the Eddington inversion method aiming at predicting phase-space distribution from the gravitationnal potential. Those results are positive and very consistent and promisingin view of GAIA data analysis improvement and calibration. Further more, we also revisit the astrophysical uncertainties related to the dark matter velocity distribution relevant in the capture by the Sun and evaluate those effects to about 15-20% on the capture rate.

Dark Matter in Astro- and Particle Physics

Dark Matter in Astro- and Particle Physics PDF Author: Hans-Volker Klapdor-Kleingrothaus
Publisher: Springer Science & Business Media
ISBN: 3642557392
Category : Science
Languages : en
Pages : 670

Book Description
The Fourth HEIDELBERG International Conference on Dark Matter in Astro and Particle Physics, DARK2002, was held in Cape Town, South Africa, in the period 4-9 February 2002. This majestic natural area was the site of the first conference of this series (hosted since 1996 in Heidelberg) to be held outside of Germany. Dark Matter has become one of the most exciting and central fields of as trophysics, particle physics and cosmology. The conference covered, as usual for this series, a large range of topics, theoretical and experimental. Topics included Astronomical Evidence for Dark Matter, the Cosmic Microwave Background, Supersymmetry, Inflation and Dark Energy, Structure Formation, Hot and Cold Dark Matter, and Ultrahigh Energy Cosmic Rays all of which were represented by experts in the field. It was very nice to see again many of our 'old' friends in Dark Matter here in South Africa. The organizers were very glad to see, in addition to world experts, the new generation here. Many young participants gave very nice professional talks during the conference. We are grateful to John Ellis for doing an incredible job preparing his excellent summary talk during the sessions. Some special interest and intensive discussions were naturally raised by the first announcement of terrestrial evidence for hot dark matter, obtained from neutrino less double beta decay. This now adds to the evidence for cold dark matter which we have from DAM A for several years already, and which remained unchallenged up to now by other experiments.

Particle Dark Matter

Particle Dark Matter PDF Author: Gianfranco Bertone
Publisher: Cambridge University Press
ISBN: 0521763681
Category : Science
Languages : en
Pages : 763

Book Description
Describes the dark matter problem in particle physics, astrophysics and cosmology for graduate students and researchers.

Simulations of Dark Energy Cosmologies

Simulations of Dark Energy Cosmologies PDF Author: Elise Jennings
Publisher: Springer Science & Business Media
ISBN: 3642293395
Category : Science
Languages : en
Pages : 117

Book Description
A major outstanding problem in physics is understanding the nature of the dark energy that is driving the accelerating expansion of the Universe. This thesis makes a significant contribution by demonstrating, for the first time, using state-of-the-art computer simulations, that the interpretation of future galaxy survey measurements is far more subtle than is widely assumed, and that a major revision to our models of these effects is urgently needed. The work contained in the thesis was used by the WiggleZ dark energy survey to measure the growth rate of cosmic structure in 2011 and had a direct impact on the design of the surveys to be conducted by the European Space Agency's Euclid mission, a 650 million euro project to measure dark energy.

Sources and Detection of Dark Matter and Dark Energy in the Universe

Sources and Detection of Dark Matter and Dark Energy in the Universe PDF Author: David B. Cline
Publisher: Springer Science & Business Media
ISBN: 3662045877
Category : Science
Languages : en
Pages : 551

Book Description
Dark matter research is one of the most fascinating and active fields among current high-profile scientific endeavours. It holds the key to all major breakthroughs to come in the fields of cosmology and astroparticle physics. The present volume is particularly concerned with the sources and the detection of dark matter and dark energy in the universe and will prove to be an invaluable research tool for all scientists who work in this field.

Beyond ΛCDM

Beyond ΛCDM PDF Author: Sownak Bose
Publisher: Springer
ISBN: 3319967614
Category : Science
Languages : en
Pages : 207

Book Description
This book employs computer simulations of ‘artificial’ Universes to investigate the properties of two popular alternatives to the standard candidates for dark matter (DM) and dark energy (DE). It confronts the predictions of theoretical models with observations using a sophisticated semi-analytic model of galaxy formation. Understanding the nature of dark matter (DM) and dark energy (DE) are two of the most central problems in modern cosmology. While their important role in the evolution of the Universe has been well established—namely, that DM serves as the building blocks of galaxies, and that DE accelerates the expansion of the Universe—their true nature remains elusive. In the first half, the authors consider ‘sterile neutrino’ DM, motivated by recent claims that these particles may have finally been detected. Using sophisticated models of galaxy formation, the authors find that future observations of the high redshift Universe and faint dwarf galaxies in the Local Group can place strong constraints on the sterile neutrino scenario. In the second half, the authors propose and test novel numerical algorithms for simulating Universes with a ‘modified’ theory of gravity, as an alternative explanation to accelerated expansion. The authors’ techniques improve the efficiency of these simulations by more than a factor of 20 compared to previous methods, inviting the readers into a new era for precision cosmological tests of gravity.