Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures PDF full book. Access full book title Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures by Pui-Lam Ng. Download full books in PDF and EPUB format.

Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures

Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures PDF Author: Pui-Lam Ng
Publisher: Open Dissertation Press
ISBN: 9781361429570
Category :
Languages : en
Pages :

Book Description
This dissertation, "Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures" by Pui-lam, Ng, 吳沛林, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled CONSTITUTIVE MODELLING AND FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE STRUCTURES Submitted by NG Pui Lam for the Degree of Doctor of Philosophy at The University of Hong Kong in September 2007 This thesis is divided into two parts. The first part is devoted to the development of new constitutive models of reinforced concrete. To properly simulate the stress path dependence of concrete, the author devises herein the nonlinear damage model. In this model, the microcracking induced by stressing of concrete is viewed as damage, which is described by two quantifiable damage parameters: the damaged modulus and the residual strain. On the shear behaviour of concrete, it is postulated that the shear stress envelope of concrete is governed by two criteria: the Mohr-Coulomb criterion of maximum shear stress and the non- orthogonal minor crack criterion of maximum shear stress. A stress path dependent shear stress-strain relation of concrete is established. Time dependent analysis of shrinkage and creep effects in concrete structures requires storage of stress histories of finite elements for evaluation of creep. This poses a hindrance to the analysis of large problems. To circumvent the memorisation of stress histories, a new multi-layer visco-elastic concrete creep model is developed. Besides, for structures constructed in stages, re-analysis of the partially completed structure in each stage is necessary in response to changes in structural configurations during construction. Herein, the locked-in strain is introduced to allow analysing altogether the completed and uncompleted portions, thus eliminating the efforts on re-meshing and location matching of element stresses and deformations. The interactions between concrete and reinforcement are simulated in conjunction with the discrete modelling of reinforcing bars. The Goodman interface element is adapted for modelling concrete-to-reinforcement bond with the implementation of nonlinear bond stress-slip relation. Besides, the dowel action for discrete reinforcing bars is modelled based on the beam on elastic foundation theory. The second part of this thesis is on the analysis of reinforced concrete structures. The tension stiffening phenomenon in cracked concrete beams is investigated. From finite element analysis, stress distributions at beam cross-sections are revealed and based on which a tensile stress block is derived. The tensile stress block enables assessment of beam deflections in structural design process without resorting to finite element analysis for each individual beam. Furthermore, the post- peak behaviour of beams and deep beams is analysed. The effects of concrete residual strain, bond slip, and dowel action on beam responses are studied. The finite element programme is applied to the analysis of shear transfer across joints between concrete units, with particular reference to precast segmental post-tensioned bridges. To model the epoxy adhesive between joint surfaces, the epoxy element is developed from the nonlinear linkage element. It is found that with the joint surfaces pressing against each other by prestressing, the shear transfer capacity of flat joints is already sufficient (comparable to intact concrete), and the provision of shear keys at joint surfaces is superfluous from the shear stren

Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures

Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures PDF Author: Pui-Lam Ng
Publisher: Open Dissertation Press
ISBN: 9781361429570
Category :
Languages : en
Pages :

Book Description
This dissertation, "Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures" by Pui-lam, Ng, 吳沛林, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled CONSTITUTIVE MODELLING AND FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE STRUCTURES Submitted by NG Pui Lam for the Degree of Doctor of Philosophy at The University of Hong Kong in September 2007 This thesis is divided into two parts. The first part is devoted to the development of new constitutive models of reinforced concrete. To properly simulate the stress path dependence of concrete, the author devises herein the nonlinear damage model. In this model, the microcracking induced by stressing of concrete is viewed as damage, which is described by two quantifiable damage parameters: the damaged modulus and the residual strain. On the shear behaviour of concrete, it is postulated that the shear stress envelope of concrete is governed by two criteria: the Mohr-Coulomb criterion of maximum shear stress and the non- orthogonal minor crack criterion of maximum shear stress. A stress path dependent shear stress-strain relation of concrete is established. Time dependent analysis of shrinkage and creep effects in concrete structures requires storage of stress histories of finite elements for evaluation of creep. This poses a hindrance to the analysis of large problems. To circumvent the memorisation of stress histories, a new multi-layer visco-elastic concrete creep model is developed. Besides, for structures constructed in stages, re-analysis of the partially completed structure in each stage is necessary in response to changes in structural configurations during construction. Herein, the locked-in strain is introduced to allow analysing altogether the completed and uncompleted portions, thus eliminating the efforts on re-meshing and location matching of element stresses and deformations. The interactions between concrete and reinforcement are simulated in conjunction with the discrete modelling of reinforcing bars. The Goodman interface element is adapted for modelling concrete-to-reinforcement bond with the implementation of nonlinear bond stress-slip relation. Besides, the dowel action for discrete reinforcing bars is modelled based on the beam on elastic foundation theory. The second part of this thesis is on the analysis of reinforced concrete structures. The tension stiffening phenomenon in cracked concrete beams is investigated. From finite element analysis, stress distributions at beam cross-sections are revealed and based on which a tensile stress block is derived. The tensile stress block enables assessment of beam deflections in structural design process without resorting to finite element analysis for each individual beam. Furthermore, the post- peak behaviour of beams and deep beams is analysed. The effects of concrete residual strain, bond slip, and dowel action on beam responses are studied. The finite element programme is applied to the analysis of shear transfer across joints between concrete units, with particular reference to precast segmental post-tensioned bridges. To model the epoxy adhesive between joint surfaces, the epoxy element is developed from the nonlinear linkage element. It is found that with the joint surfaces pressing against each other by prestressing, the shear transfer capacity of flat joints is already sufficient (comparable to intact concrete), and the provision of shear keys at joint surfaces is superfluous from the shear stren

Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures

Constitutive Modelling and Finite Element Analysis of Reinforced Concrete Structures PDF Author: Pui-lam Ng
Publisher:
ISBN:
Category : Concrete
Languages : en
Pages : 844

Book Description


Practitioners' Guide to Finite Element Modelling of Reinforced Concrete Structures

Practitioners' Guide to Finite Element Modelling of Reinforced Concrete Structures PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883940851
Category : Technology & Engineering
Languages : en
Pages : 3

Book Description
Non-linear computer analysis methods have seen remarkable advancement in the last half-century. The state-of-the-art in non-linear finite element analysis of reinforced concrete has progressed to the point where such procedures are close to being practical, every-day tools for design office engineers. Non-linear computer analysis procedures can be used to provide reliable assessments of the strength and integrity of damaged or deteriorated structures, or of structures built to previous codes, standards or practices deemed to be deficient today. They can serve as valuable tools in assessing the expected behaviour from retrofitted structures, or in investigating and rationally selecting amongst various repair alternatives. fib Bulletin 45 provides an overview of current concepts and techniques relating to computer-based finite element modelling of structural concrete. It summarises the basic knowledge required for use of nonlinear analysis methods as applied to practical design, construction and maintenance of concrete structures, and attempts to provide a diverse and balanced portrayal of the current technical knowledge, recognizing that there are often competing and conflicting viewpoints. This report does not give advice on picking one model over another but, rather, provides guidance to designers on how to use existing and future models as tools in design practice, in benchmarking of their models against established and reliable test data and in selecting an appropriate safety factor as well as recognising various pitfalls. fib Bulletin 45 is intended for practicing engineers, and therefore focuses more on practical application and less on the subtleties of constitutive modelling.

Finite Element Analysis of Reinforced Concrete Structures II

Finite Element Analysis of Reinforced Concrete Structures II PDF Author: Jeremy Isenberg
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 734

Book Description
This collection contains 10 papers discussing finite element analysis of reinforced concrete structures presented at an international workshop held in New York, New York, June 2-5, 1991.

Constitutive Models for Nonlinear Finite Element Analysis of Reinforced Concrete Structures

Constitutive Models for Nonlinear Finite Element Analysis of Reinforced Concrete Structures PDF Author: F. Barzegar
Publisher:
ISBN: 9780858413139
Category : Reinforced concrete
Languages : en
Pages : 74

Book Description


A Simple Nonlinear Constitutive Model for Finite Element Investigation of Reinforced Concrete Structures

A Simple Nonlinear Constitutive Model for Finite Element Investigation of Reinforced Concrete Structures PDF Author: William K. Rule
Publisher:
ISBN:
Category :
Languages : en
Pages : 474

Book Description


Computational Modelling of Concrete Structures

Computational Modelling of Concrete Structures PDF Author: Nenad Bicanic
Publisher: CRC Press
ISBN: 1138001457
Category : Technology & Engineering
Languages : en
Pages : 1108

Book Description
The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. The conference reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. Conference topics and invited papers cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: * Constitutive and Multiscale Modelling of Concrete * Advances in Computational Modelling * Time Dependent and Multiphysics Problems * Performance of Concrete Structures The book is of special interest to researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Constitutive Modelling and Finite Element Analysis of Concrete Structures with Regard to Environmental Influence

Constitutive Modelling and Finite Element Analysis of Concrete Structures with Regard to Environmental Influence PDF Author: Ola Dahlblom
Publisher:
ISBN:
Category : Concrete
Languages : en
Pages : 154

Book Description


Computational Modelling of Concrete and Concrete Structures

Computational Modelling of Concrete and Concrete Structures PDF Author: Günther Meschke
Publisher: CRC Press
ISBN: 100064474X
Category : Technology & Engineering
Languages : en
Pages : 1500

Book Description
Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.

Plasticity in Reinforced Concrete

Plasticity in Reinforced Concrete PDF Author: Wai-Fah Chen
Publisher: J. Ross Publishing
ISBN: 9781932159745
Category : Technology & Engineering
Languages : en
Pages : 500

Book Description
J. Ross Publishing Classics are world-renowned texts and monographs written bt preeminent scholars. These books are available to students, researchers, professionals, and libararies.