Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices PDF full book. Access full book title Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices by Christina V. Schwarz. Download full books in PDF and EPUB format.

Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices

Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices PDF Author: Christina V. Schwarz
Publisher: NSTA Press
ISBN: 1941316956
Category : Education
Languages : en
Pages : 393

Book Description
When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.

Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices

Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices PDF Author: Christina V. Schwarz
Publisher: NSTA Press
ISBN: 1941316956
Category : Education
Languages : en
Pages : 393

Book Description
When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.

A Framework for K-12 Science Education

A Framework for K-12 Science Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400

Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.

Connecting Science and Engineering Education Practices in Meaningful Ways

Connecting Science and Engineering Education Practices in Meaningful Ways PDF Author: Leonard A. Annetta
Publisher: Springer
ISBN: 331916399X
Category : Science
Languages : en
Pages : 384

Book Description
The need for a scientifically literate citizenry, one that is able to think critically and engage productively in the engineering design process, has never been greater. By raising engineering design to the same level as scientific inquiry the Next Generation Science Standards’ (NGSS) have signaled their commitment to the integration of engineering design into the fabric of science education. This call has raised many critical questions...How well do these new standards represent what actually engineers do? Where do the deep connections among science and engineering practices lie? To what extent can (or even should) science and engineering practices co-exist in formal and informal educational spaces? Which of the core science concepts are best to leverage in the pursuit of coherent and compelling integration of engineering practices? What science important content may be pushed aside? This book, tackles many of these tough questions head on. All of the contributing authors consider the same core question: Given the rapidly changing landscape of science education, including the elevated status of engineering design, what are the best approaches to the effective integration of the science and engineering practices? They answered with rich descriptions of pioneering approaches, critical insights, and useful practical examples of how embodying a culture of interdisciplinarity and innovation can fuel the development of a scientifically literate citizenry . This collection of work builds traversable bridges across diverse research communities and begins to break down long standing disciplinary silos that have historically often hamstrung well-meaning efforts to bring research and practice from science and engineering together in meaningful and lasting ways.

Connecting Science Concepts and Engineering Practices

Connecting Science Concepts and Engineering Practices PDF Author: Elizabeth Anne McBride
Publisher:
ISBN:
Category :
Languages : en
Pages : 112

Book Description
It is often claimed that engineering projects improve student achievement in mathematics and science, but research on this topic has shown that many projects do not live up to the claim (Teacher Advisory Council, 2009). Ideally, undertaking a science project should be motivating, while also helping students to understand the interplay between science concepts (like energy transformation) and engineering design decisions. This dissertation research investigates ways to integrate engineering practices and science concepts (like energy transformation) in classroom settings. I investigate ways to integrate the Next Generation Science Standards (NGSS) science and engineering practices while simultaneously expanding the knowledge integration theory (Linn & Eylon, 2011). I refine knowledge integration design principles in classroom studies, comparing alternative forms of instruction where students integrate engineering design and science disciplinary concepts. I accomplish this by creating new technologies to support students in building solar ovens while testing their design ideas in an interactive computer model that connects science concepts and design decisions. When students build a physical model they may neglect the scientific basis for their decisions, instead focusing on details of construction that may be superficial rather than scientifically based. Educational tools, like interactive computer models, can help students connect science principles and design decisions by making mechanisms such as energy transformation visible. The NGSS envision that instruction would combine practices including modeling, data, analysis, computational thinking, and design to enable students to integrate their scientific and engineering ideas (NGSS Lead States, 2013). This research identifies optimal ways to integrate science and engineering practices by taking advantage of interactive models, automated guidance for student short essays, and supports for making evidence centered decisions. The investigations are guided by the knowledge integration theory and the results expand the theory into the engineering domain. In this dissertation, I present five empirical chapters. Each study uses a solar ovens curriculum in which students use a virtual model to design and explore energy transformation, then build and test a physical solar oven. These studies investigate ways to support students in integrating their ideas about energy transformation with ideas about engineering design. The first empirical chapter investigates how computer models function in hands-on curriculum to aid in the knowledge integration process. The second and third empirical chapters investigate supports for students while they use computer models. These chapters document how students interact with the model. Because the computer model aids in both design and reflection, there are three chapters devoted to investigations of how the computer model aids students in knowledge integration. A fourth empirical chapter investigates the non-normative, yet common, idea that shiny or dark objects “attract” light to them, causing them to heat up. I first collect data about the ideas students present around this non-normative idea, then present a method to automatically score student written responses for the presence of this idea. This automatic scoring algorithm could support the development of automated guidance that could then encourage students to refine their ideas. The fifth empirical chapter investigates two ways to frame the curriculum. Since the goal of this curriculum is to integrate both science content ideas and engineering design ideas, I investigate two different frameworks for presenting the curriculum – science-centered or engineering-centered. Together, these chapters suggest guidelines for the structure of hands-on projects that aim to teach both science concepts and engineering design. First, creating dynamic computer models that allow students to test their design ideas has proven useful in helping students integrate science disciplinary ideas and engineering practices. However, students need scaffolding to integrate these ideas and practices. To ensure that the virtual models inform student designs in a meaningful way (and vice versa), there should be careful consideration about when during the curriculum they are introduced. Including science content in a meaningful way and supporting the integration of science ideas is also critical for the success of projects that are intended to support the integration of science and engineering. To help students make sense of key scientific phenomena, designers need to identify ideas that are challenging for students to distinguish among, like that of light propagation (e.g., is light reflected, absorbed, or “attracted”?). Creating opportunities for students to follow the knowledge integration process is important with these types of ideas, in order to give students the opportunity to integrate their disparate and perhaps contradictory ideas. Specifically, students need to generate multiple ideas so that those ideas can be inspected, added to through the use of inquiry activities, and then they can distinguish among their entire corpus of ideas. This process helps students to make sense of their ideas; the addition of an engineering project provides further evidence for students to reflect upon. It is also important to consider the goals for learning when framing curriculum as either an engineering or a science project. Different ways of framing the same type of project may lead to different learning outcomes. If a project is framed around engineering design, students are likely to develop stronger engineering practices, but their understanding of scientific content may not be as deep. If a project is framed as a scientific investigation, students may integrate their science ideas, but not develop a strong sense of engineering practices.

Guide to Implementing the Next Generation Science Standards

Guide to Implementing the Next Generation Science Standards PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309305152
Category : Education
Languages : en
Pages : 190

Book Description
A Framework for K-12 Science Education and Next Generation Science Standards (NGSS) describe a new vision for science learning and teaching that is catalyzing improvements in science classrooms across the United States. Achieving this new vision will require time, resources, and ongoing commitment from state, district, and school leaders, as well as classroom teachers. Successful implementation of the NGSS will ensure that all K-12 students have high-quality opportunities to learn science. Guide to Implementing the Next Generation Science Standards provides guidance to district and school leaders and teachers charged with developing a plan and implementing the NGSS as they change their curriculum, instruction, professional learning, policies, and assessment to align with the new standards. For each of these elements, this report lays out recommendations for action around key issues and cautions about potential pitfalls. Coordinating changes in these aspects of the education system is challenging. As a foundation for that process, Guide to Implementing the Next Generation Science Standards identifies some overarching principles that should guide the planning and implementation process. The new standards present a vision of science and engineering learning designed to bring these subjects alive for all students, emphasizing the satisfaction of pursuing compelling questions and the joy of discovery and invention. Achieving this vision in all science classrooms will be a major undertaking and will require changes to many aspects of science education. Guide to Implementing the Next Generation Science Standards will be a valuable resource for states, districts, and schools charged with planning and implementing changes, to help them achieve the goal of teaching science for the 21st century.

Crosscutting Concepts

Crosscutting Concepts PDF Author: Jeffrey Nordine
Publisher: National Science Teachers Association
ISBN: 9781681407289
Category : Science
Languages : en
Pages : 0

Book Description
"If you've been trying to figure out how crosscutting concepts (CCCs) fit into three-dimensional learning, this in-depth resource will show you their usefulness across the sciences. Crosscutting Concepts: Strengthening Science and Engineering Learning is designed to help teachers at all grade levels (1) promote students' sensemaking and problem-solving abilities by integrating CCCs with science and engineering practices and disciplinary core ideas; (2) support connections across multiple disciplines and diverse contexts; and (3) use CCCs as a set of lenses through which students can learn about the world around them. The book is divided into the following four sections. Foundational issues that undergird crosscutting concepts. You'll see how CCCs can change your instruction, engage your students in science, and broaden access and inclusion for all students in the science classroom. An in-depth look at individual CCCs. You'll learn to use each CCC across disciplines, understand the challenges students face in learning CCCs, and adopt exemplary teaching strategies. Ways to use CCCs to strengthen how you teach key topics in science. These topics include the nature of matter, plant growth, and weather and climate, as well as engineering design. Ways that CCCs can enhance the work of science teaching. These topics include student assessment and teacher professional collaboration. Throughout the book, vignettes drawn from the authors' own classroom experiences will help you put theory into practice. Instructional Applications show how CCCs can strengthen your planning. Classroom Snapshots offer practical ways to use CCCs in discussions and lessons. No matter how you use this book to enrich your thinking, it will help you leverage the power of CCCs to strengthen students' science and engineering learning. As the book says, "CCCs can often provide deeper insight into phenomena and problems by providing complementary perspectives that both broaden and sharpen our view on the rapidly changing world that students will inherit.""--

Ambitious Science Teaching

Ambitious Science Teaching PDF Author: Mark Windschitl
Publisher: Harvard Education Press
ISBN: 1682531643
Category : Education
Languages : en
Pages : 455

Book Description
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.

Disciplinary Core Ideas

Disciplinary Core Ideas PDF Author: Ravit Golan Duncan
Publisher:
ISBN: 9781938946417
Category : Science
Languages : en
Pages : 0

Book Description
Like all enthusiastic teachers, you want your students to see the connections between important science concepts so they can grasp how the world works now-- and maybe even make it work better in the future. But how exactly do you help them learn and apply these core ideas? Just as its subtitle says, this important book aims to reshape your approach to teaching and your students' way of learning. Building on the foundation provided by A Framework for K- 12 Science Education, which informed the development of the Next Generation Science Standards, the book' s four sections cover these broad areas: 1. Physical science core ideas explain phenomena as diverse as why water freezes and how information can be sent around the world wirelessly. 2. Life science core ideas explore phenomena such as why children look similar but not identical to their parents and how human behavior affects global ecosystems. 3. Earth and space sciences core ideas focus on complex interactions in the Earth system and examine phenomena as varied as the big bang and global climate change. 4. Engineering, technology, and applications of science core ideas highlight engineering design and how it can contribute innovative solutions to society' s problems. Disciplinary Core Ideas can make your science lessons more coherent and memorable, regardless of what subject matter you cover and what grade you teach. Think of it as a conceptual tool kit you can use to help your students learn important and useful science now-- and continue learning throughout their lives.

Engineering in K-12 Education

Engineering in K-12 Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030914471X
Category : Education
Languages : en
Pages : 595

Book Description
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.

STEM Lesson Essentials, Grades 3-8

STEM Lesson Essentials, Grades 3-8 PDF Author: Jo Anne Vasquez
Publisher: Heinemann Educational Books
ISBN: 9780325043586
Category : Education
Languages : en
Pages : 0

Book Description
Want to know how to implement authentic STEM teaching and learning into your classroom? STEM Lesson Essentials provides all the tools and strategies you'll need to design integrated, interdisciplinary STEM lessons and units that are relevant and exciting to your students. With clear definitions of both STEM and STEM literacy, the authors argue that STEM in itself is not a curriculum, but rather a way of organizing and delivering instruction by weaving the four disciplines together in intentional ways. Rather than adding two new subjects to the curriculum, the engineering and technology practices can instead be blended into existing math and science lessons in ways that engage students and help them master 21st century skills.