Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing PDF full book. Access full book title Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing by . Download full books in PDF and EPUB format.

Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

Insights Into the Molecular Level Composition, Sources, and Formation Mechanisms of Dissolved Organic Matter in Aerolsols and Precipitation

Insights Into the Molecular Level Composition, Sources, and Formation Mechanisms of Dissolved Organic Matter in Aerolsols and Precipitation PDF Author: Katye Elisabeth Altieri
Publisher:
ISBN:
Category : Atmospheric aerosols
Languages : en
Pages : 163

Book Description
Atmospheric aerosols scatter and absorb light influencing the global radiation budget and climate, and are associated with adverse effects on human health. Precipitation is an important removal mechanism for atmospheric dissolved organic matter (DOM), and a potentially important input for receiving ecosystems. However, the sources, formation, and composition of atmospheric DOM in aerosols and precipitation are not well understood. This dissertation investigates the composition and formation mechanisms of secondary organic aerosol (SOA) formed through cloud processing reactions, elucidates the composition and sources of DOM in rainwater, and provides links connecting the two. Photochemical batch aqueous-phase reactions of organics with both biogenic and anthropogenic sources (i.e., methylglyoxal, pyruvic acid) and OH radical were performed to simulate cloud processing. The composition of products formed through cloud processing experiments and rainwater collected in New Jersey, USA was investigated using a combination of electrospray ionization mass spectrometry techniques, including ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry. This dissertation has resulted in the first evidence that oligomers form through cloud processing reactions, the first detailed chemical mechanism of aqueous phase oligomerization, the first identification of oligomers, organosulfates, and nitrooxy organosulfates in precipitation, and the first molecular level chemical characterization of organic nitrogen in precipitation. The formation of oligomers in SOA helps to explain the presence of large multifunctional compounds and humic like substances (HULIS) that dominate particulate organic mass. Oligomers have low vapor pressures and remain in the particle phase after cloud evaporation, enhancing SOA. The chemical properties of the oligomers suggest that they are less hygroscopic than the monomeric reaction products (i.e., organic acids). Their elemental ratios are consistent with the hypothesis that oligomers are a large contributor to aged organic aerosol mass. The majority of the compounds identified in rainwater samples by advanced mass spectrometry appear to be products of atmospheric reactions, including known contributors to SOA formed from gas phase, aerosol phase, and in-cloud reactions in the atmosphere. The similarities between the complex organic matter in rainwater and SOA suggest that the large uncharacterized component of SOA is the main contributor to the large uncharacterized component of rainwater DOM.

Aerosols in Atmospheric Chemistry

Aerosols in Atmospheric Chemistry PDF Author: Yue Zhang
Publisher: American Chemical Society
ISBN: 0841299293
Category : Science
Languages : en
Pages : 176

Book Description
The uncertainties in the aerosol effects on radiative forcing limit our knowledge of climate change, presenting us with an important research challenge. Aerosols in Atmospheric Chemistry introduces basic concepts about the characterization, formation, and impacts of ambient aerosol particles as an introduction to graduate students new to the field. Each chapter also provides an up-to-date synopsis of the latest knowledge of aerosol particles in atmospheric chemistry.

Environmental Chemistry of Aerosols

Environmental Chemistry of Aerosols PDF Author: Ian Colbeck
Publisher: John Wiley & Sons
ISBN: 1405139196
Category : Science
Languages : en
Pages : 276

Book Description
Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues such as climate change, stratospheric ozone depletion and air quality. In urban environments, aerosol particles can affect human health through their inhalation. Atmospheric aerosols originate from naturally occurring processes, such as volcanic emissions, sea spray and mineral dust emissions, or from anthropogenic activity such as industry and combustion processes. Aerosols present pathways for reactions, transport, and deposition that would not occur in the gas phase alone. Understanding the ways in which aerosols behave, evolve, and exert these effects requires knowledge of their formation and removal mechanism, transport processes, as well as their physical and chemical characteristics. Motivated by climate change and adverse health effects of traffic-related air pollution, aerosol research has intensified over the past couple of decades, and recent scientific advances offer an improved understanding of the mechanisms and factors controlling the chemistry of atmospheric aerosols. Environmental Chemistry of Aerosols brings together the current state of knowledge of aerosol chemistry, with chapters written by international leaders in the field. It will serve as an authoritative and practical reference for scientists studying the Earth’s atmosphere and as an educational and training resource for both postgraduate students and professional atmospheric scientists.

A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change

A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change PDF Author: Panel on Aerosol Radiative Forcing and Climate Change
Publisher: National Academies Press
ISBN: 0309588871
Category : Science
Languages : en
Pages : 180

Book Description
This book recommends the initiation of an "integrated" research program to study the role of aerosols in the predicted global climate change. Current understanding suggest that, even now, aerosols, primarily from anthropogenic sources, may be reducing the rate of warming caused by greenhouse gas emissions. In addition to specific research recommendations, this book forcefully argues for two kinds of research program integration: integration of the individual laboratory, field, and theoretical research activities and an integrated management structure that involves all of the concerned federal agencies.

The Role of Green Leafy Plants in Atmospheric Chemistry

The Role of Green Leafy Plants in Atmospheric Chemistry PDF Author: Rebecca M. Harvey
Publisher:
ISBN:
Category :
Languages : en
Pages : 452

Book Description
Aerosols play important roles in atmospheric and environmental processes. Not only do they impact human health, they also affect visibility and climate. Despite recent advances made to under their sources and fate, there remains a limited understanding of the mechanisms that lead to the formation of aerosols and their ultimate fate in the atmosphere. These knowledge gaps provide the crux of the research reported herein, which has focused on identifying novel sources of atmospheric aerosol, characterizing its physical and optical properties, and rationalizing these properties using an in-depth knowledge of the molecular level mechanisms that led to its formation. Upon mowing, turfgrasses emit large amounts of green leaf volatiles which can then be oxidized by ozone to form SOA. Overall, the mowing of lawns has the potential to contribute nearly 50 μg SOA per square meter of lawn mowed. This SOA contribution is on the same order of magnitude as other predominant SOA sources (isoprene, monoterpenes, sesquiterpenes). Turfgrasses represent an interesting and potentially meaningful SOA source because they contribute to SOA and also because they cover large land areas in close proximity to oxidant sources. Another related SOA precursor is sugarcane, which is in the same family as turfgrass and is among the largest agricultural crops worldwide. Globally, the ozonolysis of sugarcane has the potential to contribute 16 Mg SOA to the atmosphere, compared to global estimates of SOA loading that range from 12-70 Tg SOA. In order to fully understand the role of atmospheric SOA on the radiative budget (and therefore climate), it is also important to understand its optical properties; its ability to absorb vs scatter light. Turfgrass and sugarcane produced SOA that was weakly absorbing while its scatter efficiency was wavelength and size-dependent. Interestingly, SOA formed under both dry (10% RH) and wet (70% RH) conditions had the same bulk chemical properties (O:C), yet significantly different optical properties, which was attributed to differences in molecular-level composition. The work presented herein represents a unique, inclusive study of SOA precursors. A complete understanding of the chemistry leading to SOA formation is used to understand its physical and optical properties and evaluate these large-scale effects of SOA from these precursors.

Atmospheric Multiphase Chemistry

Atmospheric Multiphase Chemistry PDF Author: Hajime Akimoto
Publisher: John Wiley & Sons
ISBN: 1119422426
Category : Science
Languages : en
Pages : 539

Book Description
An important guide that highlights the multiphase chemical processes for students and professionals who want to learn more about aerosol chemistry Atmospheric Multiphase Reaction Chemistry provides the information and knowledge of multiphase chemical processes and offers a review of the fundamentals on gas-liquid equilibrium, gas phase reactions, bulk aqueous phase reactions, and gas-particle interface reactions related to formation of secondary aerosols. The authors—noted experts on the topic—also describe new particle formation, and cloud condensation nuclei activity. In addition, the text includes descriptions of field observations on secondary aerosols and PM2.5. Atmospheric aerosols play a critical role in air quality and climate change. There is growing evidence that the multiphase reactions involving heterogeneous reactions on the air-particle interface and the reactions in the bulk liquid phase of wet aerosol and cloud/fog droplets are important processes forming secondary aerosols in addition to gas-phase oxidation reactions to form low-volatile compounds. Comprehensive in scope, the book offers an understanding of the topic by providing a historical overview of secondary aerosols, the fundamentals of multiphase reactions, gas-phase reactions of volatile organic compounds, aqueous phase and air-particle interface reactions of organic compound. This important text: Provides knowledge on multiphase chemical processes for graduate students and research scientists Includes fundamentals on gas-liquid equilibrium, gas phase reactions, bulk aqueous phase reactions, and gas-particle interface reactions related to formation of secondary aerosols Covers in detail reaction chemistry of secondary organic aerosols Written for students and research scientists in atmospheric chemistry and aerosol science of environmental engineering, Atmospheric Multiphase Reaction Chemistry offers an essential guide to the fundamentals of multiphase chemical processes.

Atmospheric Aerosols

Atmospheric Aerosols PDF Author: Rekha Kale
Publisher: Scitus Academics LLC
ISBN: 9781681171326
Category : Aerosols
Languages : en
Pages : 0

Book Description
Atmospheric Aerosols is a vital problem in current environmental research due to its importance in atmospheric optics, energetics, radiative transfer studies, chemistry, climate, biology and public health. Aerosols can influence the energy balance of the terrestrial atmosphere, the hydrological cycle, atmospheric dynamics and monsoon circulations. Because of the heterogeneous aerosol field with large spatial and temporal variability and reduction in uncertainties in aerosol quantification is a challenging task in atmospheric sciences. Keeping this in view the present study aims to assess the impact of aerosols on coastal Indian station Visakhapatnam and the adjoining Bay of Bengal. An aerosol is a colloid of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or not. Examples of natural aerosols are fog, forest exudates and geyser steam.

Atmospheric Aerosols

Atmospheric Aerosols PDF Author: Hayder Abdul-Razzak
Publisher: BoD – Books on Demand
ISBN: 9535107283
Category : Science
Languages : en
Pages : 494

Book Description
The book is divided into two sections. The first section presents characterization of atmospheric aerosols and their impact on regional climate from East Asia to the Pacific. Ground-based, air-born, and satellite data were collected and analyzed. Detailed information about measurement techniques and atmospheric conditions were provided as well. In the second section, authors provide detailed information about the organic and inorganic constituents of atmospheric aerosols. They discuss the chemical and physical processes, temporal and spatial distribution, emissions, formation, and transportation of aerosol particles. In addition, new measurement techniques are introduced. This book hopes to serve as a useful resource to resolve some of the issues associated with the complex nature of the interaction between atmospheric aerosols and climatology.

Connecting Chemistry and Climate Through Aerosol Particles: Laboratory and Field Studies of Cloud Condensation Nuclei

Connecting Chemistry and Climate Through Aerosol Particles: Laboratory and Field Studies of Cloud Condensation Nuclei PDF Author: Douglas Bradford Collins
Publisher:
ISBN: 9781321232714
Category :
Languages : en
Pages : 255

Book Description
The influence of aerosol particles on the Earth's climate is a major driver of scientific uncertainty in assessing future conditions. The importance of aerosols in their role as cloud condensation nuclei (CCN) and ice nuclei (IN), known as the Aerosol Indirect Effect, is most poorly understood. The number concentration of CCN available to nucleate droplets can have important influences on cloud albedo, lifetime, and propensity to form precipitation. Natural sources are of particular importance, since the absolute influence of aerosols on cloud properties is highly sensitive to background concentrations of CCN before anthropogenic emissions. Chemical studies of sea spray aerosol (SSA) particles, the second most abundant type of natural aerosol globally, were conducted to better understand the influence of marine organic matter on CCN activity. While direct chemical measurements of aerosol particles with diameter (d) > 500 nm indicated that the production mechanism of SSA controls particle composition, especially with respect to the amount of organic matter transferred across the air-sea interface. CCN activity studies, on the other hand, showed a weak dependence on seawater organic matter concentration. The extent to which organic matter and sea salt were externally mixed for particles with d