Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts PDF full book. Access full book title Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts by Holly Dole. Download full books in PDF and EPUB format.

Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts

Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts PDF Author: Holly Dole
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts

Connecting Metal-Support Interaction and Electrochemical Promotion Phenomena for Nano-structured Catalysts PDF Author: Holly Dole
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Metal-Support Interaction and Electrochemical Promotion of Nano-Structured Catalysts for the Reverse Water Gas Shift Reaction

Metal-Support Interaction and Electrochemical Promotion of Nano-Structured Catalysts for the Reverse Water Gas Shift Reaction PDF Author: Christopher Panaritis
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The continued release of fossil-fuel derived carbon dioxide (CO2) emissions into our atmosphere led humanity into a climate and ecological crisis. Converting CO2 into valuable chemicals and fuels will replace and diminish the need for fossil fuel-derived products. Through the use of a catalyst, CO2 can be transformed into a commodity chemical by the reverse water gas shift (RWGS) reaction, where CO2 reacts with renewable hydrogen (H2) to form carbon monoxide (CO). CO then acts as the source molecule in the Fischer-Tropsch (FT) synthesis to form a range of hydrocarbons to manufacture chemicals and fuels. While the FT synthesis is a mature process, the conversion of CO2 into CO has yet to be made commercially available due to the constraints associated with high reaction temperature and catalytic stability. Noble metal ruthenium (Ru) has been widely used for the RWGS reaction due to its high catalytic activity, however, several constraints hinder its practical use, associated with its high cost and its susceptibility to deactivation. The doping or bimetallic use of non-noble metals iron (Fe) and cobalt (Co) is an attractive option to lower material cost and tailor the selectivity of the CO2 conversion towards the RWGS reaction without compromising catalytic activity. Furthermore, employing nanostructured catalysts as nanoparticles is a viable solution to further lower the amount of metal used and utilize the highly active surface area of the catalyst. Dispersing nanoparticles on ionically conductive supports/solid electrolytes which contain species like O2−, H+, Na+, and K+, provide an approach to further enhance the reaction. This phenomenon is referred to as metal-support interaction (MSI), allowing for the ions to back spillover from the support and onto the catalyst surface. An in-situ approach referred to as Non-Faradaic Modification of catalytic activity (NEMCA), also known as electrochemical promotion of catalysis (EPOC) is used to in-situ control the movement of ionic species from the solid electrolyte to and away from the catalyst. Both the MSI and EPOC phenomena have been shown to be functionally equivalent, meaning the ionic species act to alter the work function of the catalyst by forming an effective neutral double layer on the surface, which in turn alters the binding energy of the reactant and intermediate species to promote the reaction. The main objective of this work is to develop a catalyst that is highly active and selective to the RWGS reaction at low temperatures (

Effect of Electrochemical Promotion and Metal-Support Interaction on Catalytic Performance of Nano-catalysts

Effect of Electrochemical Promotion and Metal-Support Interaction on Catalytic Performance of Nano-catalysts PDF Author: Yasmine Hajar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In heterogeneous catalysis, promoting the activity of the catalytic metals is long known as an important method to make a process more efficient and viable. Noble metals have been promoted classically by a chemical coverage of an ionic solution on the surface of the catalyst or using inert support, e.g., silica or alumina, allowing an increase of the dispersion of the catalyst. Therefore, new methods of promotion needed to be better explored to improve the efficiency of metal and metal oxide catalysts. One way of enhancing the catalyst's activity is to disperse the noble metal at the nanoscale using an active type of support that is ion-conducting. Not only lattice ions can be exchanged with the surface of the nanoparticles but it can also engage in the oxidation reaction on the surface, resulting in what is known as metal-support interaction (MSI). Another method of improving the catalytic activity is to polarize the catalyst, allowing ions to migrate from a solid electrolyte to the gas-exposed surface, in a phenomenon known as electrochemical promotion of catalysis (EPOC). The change in the ions concentration on the surface would change the adsorption energy of the gaseous reactants and enhance or supress the catalytic rate. In this thesis, the effect of supporting nanoparticles of noble and non-noble metal (oxides) (Pt, Ru, Ir, Ni) was studied for the case of ionic and ionic-electronic conducting supports (CeO2, TiO2, YSZ). The enhancement in their catalytic rate was found and correlated to an electrochemical property, the exchange current density. Then, using isotopically-labeled oxygen, the oxygen exchange ability of the conductive oxides was evaluated when supporting Ir and Ru nanoparticles and correlated with the results from C3H8 isotopic oxidation reaction, which showed the extent of involvement of oxygen from the support as carried by the isotopically-labeled CO2 produced. Following this, electrochemical promotion of catalysis experiments were performed for different reactant/catalyst systems (C2H4 - Pt, Ru; C3H8 - Pt; CH4 - Pd, Ni9Pd). In the first system, the main outcome was the functional equivalence found for the MSI and EPOC effect in promoting the catalysts as experiments were performed at different temperatures, reactants partial pressures and polarization values. In the case of C3H8/Pt, the novel dispersion of Pt on an intermediate supporting layer (LSM/GDC) was found as a feasible method to obtain long stability of the catalyst while electrochemically promoting the rate of reaction. For CH4 oxidation, the polarization of the Pd nanoparticles showed continuous oxidation of the bulk of the catalyst resulting in a continuous increase of the catalytic rate. The Ni9Pd synthesized in a way to form a core/double-shell layer of Ni/Pd resulted in an enhanced catalytic rate and enhanced stability compared to stand-alone Pd. And lastly, to comprehend the ions' effect in the electrochemical promotion and the non-Faradaic nature of the phenomena, density-functional theory (DFT) modeling was used to demonstrate the increase of the heat of adsorption of reactants depending on their electronegative/positive nature.

Nanostructured Catalysts

Nanostructured Catalysts PDF Author: Susannah L. Scott
Publisher: Springer Science & Business Media
ISBN: 0387306412
Category : Science
Languages : en
Pages : 341

Book Description
With the recent advent of nanotechnology, research and development in the area of nanostructured materials has gained unprecedented prominence. Novel materials with potentially exciting new applications are being discovered at a much higher rate than ever before. Innovative tools to fabricate, manipulate, characterize and evaluate such materials are being developed and expanded. To keep pace with this extremely rapid growth, it is necessary to take a breath from time to time, to critically assess the current knowledge and provide thoughts for future developments. This book represents one of these moments, as a number of prominent scientists in nanostructured materials join forces to provide insightful reviews of their areas of expertise, thus offering an overall picture of the state-- the art of the field. Nanostructured materials designate an increasing number of materials with designed shapes, surfaces, structures, pore systems, etc. Nanostructured materials with modified surfaces include those whose surfaces have been altered via such techniques as grafting and tethering of organic or organometallic species, or through various deposition procedures including electro, electroless and vapor deposition, or simple adsorption. These materials find important applications in catalysis, separation and environmental remediation. Materials with patterned surfaces, which are essential for the optoelectronics industry, constitute another important class of surface-modified nanostructured materials. Other materials are considered nanostructured because of their composition and internal organization.

Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control

Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control PDF Author: Benedetto Corain
Publisher: Elsevier
ISBN: 0080555004
Category : Technology & Engineering
Languages : en
Pages : 471

Book Description
Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control deals with the synthesis of metal nanoclusters along all known methodologies. Physical and chemical properties of metal nanoclusters relevant to their applications in chemical processing and materials science are covered thoroughly. Special attention is given to the role of metal nanoclusters size and shape in catalytic processes and catalytic applications relevant to industrial chemical processing.An excellent text for expanding the knowledge on the chemistry and physics of metal nanoclusters. Divided in two parts; Part I deals with general aspects of the matter and Part II has to be considered a useful handbook dealing with the production of metal nanoclusters, especially from their size-control point of view. * Divided into two parts for ease of reference: general and operational * Separation of synthetic aspects, physical properties and applications* Specific attention is given to the task of metal nanoclusters size-control

Advanced Electrocatalysts for Low-Temperature Fuel Cells

Advanced Electrocatalysts for Low-Temperature Fuel Cells PDF Author: Francisco Javier Rodríguez-Varela
Publisher: Springer
ISBN: 3319990195
Category : Science
Languages : en
Pages : 318

Book Description
This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.

Strong Metal-support Interactions

Strong Metal-support Interactions PDF Author: R. T. K. Baker
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 258

Book Description


The Catalysis of Uniform Metal Nanoparticles Deposited Onto Oxide Supports

The Catalysis of Uniform Metal Nanoparticles Deposited Onto Oxide Supports PDF Author: Nathan Musselwhite
Publisher:
ISBN:
Category :
Languages : en
Pages : 135

Book Description
Model materials consisting of metal nanoparticles loaded onto oxide supports were synthesized, characterized, and investigated in a number of catalytic chemical reactions. By varying the size, shape, and composition of nanoparticle, as well as the material used to support the nanoparticles, it was found that small changes to the catalyst can have enormous changes to the reaction activity and selectivity. Investigation of these carefully synthesized catalysts via in situ characterization, and reaction studies, leads to a deeper understanding of the molecular level parameters that govern catalysis. Through study of the properties of the nanoparticles it was discovered that nanoparticle size and shape have a dominant role in the chemoselective catalysis of furfural over platinum nanoparticles. When vapor phase furfural and hydrogen gas were passed over Pt nanoparticles ranging in size from 1.5 to 7.1 nm, the catalytic selectivity was found to be dominated by the size of the nanoparticle. Large nanoparticles promoted hydrogenation of furfural to furfuryl alcohol, while smaller nanoparticles favored decarbonylation to furan. The same size specific selectivity was found in the hydrogenative reforming (the transformation of hydrocarbons to branched isomers) of C6 hydrocarbons, in which Pt nanoparticle size controls isomerization selectivity. Methylcyclopentane was found to be extremely size dependent at lower temperatures (553 K). It was found that smaller sized nanoparticles favored isomer formation, while larger sizes catalyzed the aromatization reaction more efficiently. n-hexane was found to be much less dependent on particle size, but still showed an increase in isomerization with small particles over larger sized Pt nanoparticles. The composition of PtxRh1-x bimetallic nanoparticles was also studied. These catalysts were characterized under hexane reforming conditions with Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS), in order to find the actual surface atomic composition under real catalytic working conditions. By using AP-XPS and catalytic data in tandem, it was found that an optimum Rh loading occurred when the surface ensemble statistically favored one Rh atom surrounded by Pt atoms. By utilizing different oxide materials for catalytic supports the flow of charge can play a role in the reaction at the surface or interface in a phenomenon known as the strong metal-support interaction (SMSI). When Pt nanoparticles were loaded onto mesoporous supports made of Co3O4, NiO, MnO2, Fe2O3, and CeO2 it was found that their activity for carbon monoxide oxidation was greatly enhanced relative to the support alone or Pt loaded onto inert mesoporous silica. This finding demonstrates that the interface of the metallic Pt nanoparticle and the oxide support is able to produce turnovers that are orders of magnitude higher than the two materials separately. When the same type of experiments were investigated with n-hexane as the reactant and macroporous Al2O3, TiO2, Nb2O5, Ta2O5, and ZrO2 were utilized as supports, it was found that the reaction selectivity was greatly altered depending on the catalytic support material. TiO2, Nb2O5, and Ta2O5 (all of which are strong Lewis acids) were found to be much more selective for isomer production than the standard SiO2 mesoporous silica supported Pt nanoparticle catalyst. Finally, an acidified mesoporous silica material was utilized as the support. This material was synthesized by using AlCl3 to modify the surface of mesoporous silica. This support was found to have no activity for hexane isomerization alone. However, when Pt nanoparticles were supported on the material, the activity and isomer selectivity in hexane reforming was increased several orders of magnitude as compared to the same nanoparticles supported on unmodified mesoporous silica. This dissertation builds on the existing knowledge of known concepts in catalysis science such as structure sensitive reactions, the metal-support interaction, and acid-base chemistry. The results show how small changes in the active sites of a catalyst can create large changes in the catalytic chemistry. This research demonstrates how careful material control, characterization and reaction study can help to elucidate the molecular level components necessary to design efficient catalysts.

Metal/Metal Oxide Nanoparticles Supported on Nanostructured Carbons for Electrochemical Applications

Metal/Metal Oxide Nanoparticles Supported on Nanostructured Carbons for Electrochemical Applications PDF Author: 杨纯臻
Publisher:
ISBN: 9781361005330
Category :
Languages : en
Pages :

Book Description
This dissertation, "Metal/metal oxide nanoparticles supported on nanostructured carbons for electrochemical applications" by 杨纯臻, Chunzhen, Yang, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Among various electrochemical devices that have been developed for energy storage and conversion, electric double layer capacitors (EDLCs) and direct methanol fuel cells (DMFC) have received much research attention. Nanostructured carbon materials have been playing an important role in the development of these devices, due to such characteristics as good electrical conductivity, high chemical stability, high surface area and large pore volumes and etc. In an EDLC, nanostructured carbon electrodes, possessing pores of varied length scales, can deliver electric energy at high current loadings. This kind of pore structure also benefits the deposition of metal catalysts and the transport of reactants and products in the methanol oxidation reaction. In order to systematically study the structural effects on the electrochemical capacitance and ionic transport, a series of three-dimensional hierarchical carbons with hollow core-mesoporous shell (HCMS) structure were template-synthesized. Periodically ordered macroscopic hollow cores of 330 nm in diameter were surrounded by a mesoporous shell containing uniform pores of 3.9 nm. The shell thickness was stepwise increased from 0, 25, 50 to 100 nm. The HCMS structure was modeled by a 5-level transmission line model to study the capacitance contribution from the pores at different length scale. Results revealed that the HCMS carbon with thicker mesoporous shells can provide high capacitance, while thinner shells could deliver high power output. A series of HCMS carbon sphere supported Pt nanoparticles were synthesized via the "Carbonization over Protected and Dispersed Metal" (CPDM) method. Contrary to the conventional "polyol" synthetic method, whereas most of Pt nanoparticles were deposited on the external surface of carbon spheres; the Pt nanoparticles synthesized via the CPDM method were found encapsulated in the mesoporous carbon shells and highly dispersed throughout the carbon texture. "Accelerated stress tests‟ (ASTs) were conducted to investigate the nanopores confinement effect toward the electrochemical stability of these Pt catalysts. Results revealed that (1) the nanopores confined Pt nanoparticles on HCMS carbon spheres exhibited a stable electrochemical active surface area (ECSA) and catalytic activity; and (2) thick mesoporous carbon shells could provide better protection over the Pt nanoparticles. This "CPDM" method was further extended to synthesize highly alloyed PtRu nanoparticles supported electrocatalysts. It is expected that this CPDM method can also be applied to synthesize other metal/metal oxide supported catalysts with stable electrochemical performance. WO3 has been demonstrated as a promsing co-catalyst for Pt in the methanol oxidation reaction (MOR). The synthesis of Pt-WO3/C catalyst with well-controlled nanoparticle size (2.5 nm) and composition was achieved via a microwave-assisted water-oil microemulsion reaction. Hydrogen adsorption, CO-stripping and Cu- stripping methods were used to estimate the ECSA of Pt in the Pt-WO3/C catalysts. Among these, Cu-stripping method was relatively more reliable due to the overlapping involvement of the WO3 component in the other methods. The methanol oxidation measurement shows that a 1:1 Pt: W ratio catalyst exhibits the highest Pt-mass current density of 271 mA mg-1-Pt, 1.4 times higher than that of commercial E-TEK catalyst.

Supported Metals in Catalysis

Supported Metals in Catalysis PDF Author: James Arthur Anderson
Publisher: World Scientific
ISBN: 184816677X
Category : Science
Languages : en
Pages : 581

Book Description
With contributions from experts in supported metal catalysis, from both the industry and academia, this book presents the latest developments in characterization and application of supported metals in heterogeneous catalysis. In addition to a thorough and updated coverage of the traditional aspects of heterogeneous catalysis such as preparation, characterization and use in well-established technologies such as Naphtha reforming, the book also includes emerging areas where supported metal catalysis will make significant contributions in future developments, such as fuel cells and fine chemicals synthesis. The second edition of Supported Metals in Catalysis comes complete with new and updated chapters containing important summaries of research in a rapidly evolving field. Very few other books deal with this highly pertinent subject matter, and as such, it is a must-have for anyone working in the field of heterogeneous catalysis.