Connecting Lab-Based Attosecond Science with FEL Research PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Connecting Lab-Based Attosecond Science with FEL Research PDF full book. Access full book title Connecting Lab-Based Attosecond Science with FEL Research by . Download full books in PDF and EPUB format.

Connecting Lab-Based Attosecond Science with FEL Research

Connecting Lab-Based Attosecond Science with FEL Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is performed using x-ray photons. Following the absorption of x-rays, ejected photoelectrons can be used as a probe of the (time-evolving) molecular structure, making use of intra-molecular electron diffraction. This amounts, as some have stated, to "illuminating the molecule from within". I will present the present status of our experiments on this topic making use of the FLASH free electron laser in Hamburg. Future progress in this research field not only depends on the availability of better and more powerful light sources, but also requires sophisticated detector strategies. In my talk I will explain how we are trying to meet some of the experimental challenges by using the Medipix family of detectors, which we have already used for time- and space-resolved imaging of electrons and ions.

Connecting Lab-Based Attosecond Science with FEL Research

Connecting Lab-Based Attosecond Science with FEL Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is performed using x-ray photons. Following the absorption of x-rays, ejected photoelectrons can be used as a probe of the (time-evolving) molecular structure, making use of intra-molecular electron diffraction. This amounts, as some have stated, to "illuminating the molecule from within". I will present the present status of our experiments on this topic making use of the FLASH free electron laser in Hamburg. Future progress in this research field not only depends on the availability of better and more powerful light sources, but also requires sophisticated detector strategies. In my talk I will explain how we are trying to meet some of the experimental challenges by using the Medipix family of detectors, which we have already used for time- and space-resolved imaging of electrons and ions.

Structural Dynamics with X-ray and Electron Scattering

Structural Dynamics with X-ray and Electron Scattering PDF Author: Kasra Amini
Publisher: Royal Society of Chemistry
ISBN: 1837671141
Category : Science
Languages : en
Pages : 671

Book Description


Synchrotron Radiation and Free-Electron Lasers

Synchrotron Radiation and Free-Electron Lasers PDF Author: Kwang-Je Kim
Publisher: Cambridge University Press
ISBN: 1107162610
Category : Science
Languages : en
Pages : 299

Book Description
Preliminary concepts -- Synchrotron radiation -- Basic FEL physics -- 1D FEL analysis -- 3D FEL analysis -- Harmonic generation in high-gain FELs -- FEL oscillators and coherent hard X-rays -- Practical considerations and experimental results for high-gain FELs

The Physics of Free Electron Lasers

The Physics of Free Electron Lasers PDF Author: E.L. Saldin
Publisher: Springer Science & Business Media
ISBN: 3662040662
Category : Technology & Engineering
Languages : en
Pages : 470

Book Description
The Free Electron Laser (FEL) will be a crucial tool for research and industrial applications. This book describes the physical fundamentals of FELs on the basis of classical mechanics, electrodynamics, and the kinetic theory of charged particle beams, and will be suitable for graduate students and scientists alike. After a short introduction, the book discusses the theory of the FEL amplifier and oscillator, diffraction effects in the amplifier, and waveguide FEL.

Controlling the Quantum World

Controlling the Quantum World PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309102707
Category : Science
Languages : en
Pages : 245

Book Description
As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.

Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses

Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses PDF Author: Rick Trebino
Publisher: Springer Science & Business Media
ISBN: 146151181X
Category : Science
Languages : en
Pages : 428

Book Description
The Frequency-Resolved Optical-Gating (FROG) technique has revolutionized our ability to measure and understand ultrashort laser pulses. This book contains everything you need to know to measure even the shortest, weakest, or most complex ultrashort laser pulses. Whether you're an undergrad or an advanced researcher, you'll find easy-to-understand descriptions of all the key ideas behind all the FROG techniques, all the practical details of pulse measurement, and many new directions of research. This book is not like any other scientific book. It is a lively discussion of the basic concepts. It is an advanced treatment of research-level issues.

Synchrotron Light Sources and Free-Electron Lasers

Synchrotron Light Sources and Free-Electron Lasers PDF Author: Eberhard J. Jaeschke
Publisher: Springer
ISBN: 9783319143934
Category : Science
Languages : en
Pages : 0

Book Description
Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.

Physics of and Science with X-Ray Free-Electron Lasers

Physics of and Science with X-Ray Free-Electron Lasers PDF Author: J. Hastings
Publisher: IOS Press
ISBN: 1643681338
Category : Science
Languages : en
Pages : 272

Book Description
Many X-Ray Free-Electron Lasers (X-FELs) have been designed, built and commissioned since the first lasing of the Linac Coherent Light Source in the hard and soft X-ray regions, and great progress has been made in improving their performance and extending their capabilities. Meanwhile, experimental techniques to exploit the unique properties of X-FELs to explore atomic and molecular systems of interest to physics, chemistry, biology and the material sciences have also been developed. As a result, our knowledge of atomic and molecular science has been greatly extended. Nevertheless, there is still much to be accomplished, and the potential for discovery with X-FELs is still largely unexplored. The next generation of scientists will need to be well versed in both particle beams/FEL physics and X-ray photon science. This book presents material from the Enrico Fermi summer school: Physics of and Science with X-Ray Free-Electron Lasers, held at the Enrico Fermi International School of Physics in Varenna, Italy, from 26 June - 1 July 2017. The lectures presented at the school were aimed at introducing graduate students and young scientists to this fast growing and exciting scientific area, and subjects covered include basic accelerator and FEL physics, as well as an introduction to the main research topics in X-FEL-based biology, atomic molecular optical science, material sciences, high-energy density physics and chemistry. Bridging the gap between accelerator/FEL physicists and scientists from other disciplines, the book will be of interest to all those working in the field.

Shaken, Not Stirred!

Shaken, Not Stirred! PDF Author: Metin Tolan
Publisher: Springer Nature
ISBN: 303040109X
Category : Science
Languages : en
Pages : 203

Book Description
How do James Bond’s X-ray glasses work, the ones he uses to see whether the lady at the roulette table has a pistol concealed in her underwear? Is it really possible to launch oneself into the air and catch up with a plane that is free-falling towards the earth? Or to shoot down a helicopter with a pistol? In this lively and informative book, Germany's boldest physics professor Metin Tolan analyses the stunts and gadgets of the 007 films and even answers the question of all questions: Why does Bond drink his vodka martini shaken, not stirred? "So much entertaining science is a rare thing." Spiegel Online

Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science

Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science PDF Author: Lai Chung Liu
Publisher: Springer Nature
ISBN: 3030548511
Category : Science
Languages : en
Pages : 249

Book Description
The thesis provides the necessary experimental and analytical tools to unambiguously observe the atomically resolved chemical reactions. A great challenge of modern science has been to directly observe atomic motions during structural transitions, and while this was first achieved through a major advance in electron source brightness, the information content was still limited and new methods for image reconstruction using femtosecond electron diffraction methods were needed. One particular challenge lay in reconciling the innumerable possible nuclear configurations with the observation of chemical reaction mechanisms that reproducibly give the same kind of chemistry for large classes of molecules. The author shows that there is a simple solution that occurs during barrier crossing in which the highly anharmonic potential at that point in nuclear rearrangements couples high- and low-frequency vibrational modes to give highly localized nuclear motions, reducing hundreds of potential degrees of freedom to just a few key modes. Specific examples are given in this thesis, including two photoinduced phase transitions in an organic system, a ring closure reaction, and two direct observations of nuclear reorganization driven by spin transitions. The emerging field of structural dynamics promises to change the way we think about the physics of chemistry and this thesis provides tools to make it happen.