Author: Josef Malek
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs
Author: Josef Malek
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Conjugate Gradient Algorithms and Finite Element Methods
Author: Michal Krizek
Publisher: Springer Science & Business Media
ISBN: 3642185606
Category : Science
Languages : en
Pages : 405
Book Description
The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidemensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.
Publisher: Springer Science & Business Media
ISBN: 3642185606
Category : Science
Languages : en
Pages : 405
Book Description
The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidemensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.
Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems
Author: ENGELI
Publisher: Birkhäuser
ISBN: 3034872240
Category : Science
Languages : en
Pages : 107
Book Description
Publisher: Birkhäuser
ISBN: 3034872240
Category : Science
Languages : en
Pages : 107
Book Description
The Finite Difference Method in Partial Differential Equations
Author: A. R. Mitchell
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 296
Book Description
Extensively revised edition of Computational Methods in Partial Differential Equations. A more general approach has been adopted for the splitting of operators for parabolic and hyperbolic equations to include Richtmyer and Strang type splittings in addition to alternating direction implicit and locally one dimensional methods. A description of the now standard factorization and SOR/ADI iterative techniques for solving elliptic difference equations has been supplemented with an account or preconditioned conjugate gradient methods which are currently gaining in popularity. Prominence is also given to the Galerkin method using different test and trial functions as a means of constructing difference approximations to both elliptic and time dependent problems. The applications of finite difference methods have been revised and contain examples involving the treatment of singularities in elliptic equations, free and moving boundary problems, as well as modern developments in computational fluid dynamics. Emphasis throughout is on clear exposition of the construction and solution of difference equations. Material is reinforced with theoretical results when appropriate.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 296
Book Description
Extensively revised edition of Computational Methods in Partial Differential Equations. A more general approach has been adopted for the splitting of operators for parabolic and hyperbolic equations to include Richtmyer and Strang type splittings in addition to alternating direction implicit and locally one dimensional methods. A description of the now standard factorization and SOR/ADI iterative techniques for solving elliptic difference equations has been supplemented with an account or preconditioned conjugate gradient methods which are currently gaining in popularity. Prominence is also given to the Galerkin method using different test and trial functions as a means of constructing difference approximations to both elliptic and time dependent problems. The applications of finite difference methods have been revised and contain examples involving the treatment of singularities in elliptic equations, free and moving boundary problems, as well as modern developments in computational fluid dynamics. Emphasis throughout is on clear exposition of the construction and solution of difference equations. Material is reinforced with theoretical results when appropriate.
Applied Iterative Methods
Author: Louis A. Hageman
Publisher: Elsevier
ISBN: 1483294374
Category : Mathematics
Languages : en
Pages : 409
Book Description
Applied Iterative Methods
Publisher: Elsevier
ISBN: 1483294374
Category : Mathematics
Languages : en
Pages : 409
Book Description
Applied Iterative Methods
Sparse Matrix Computations
Author: James R. Bunch
Publisher: Academic Press
ISBN: 1483263401
Category : Mathematics
Languages : en
Pages : 468
Book Description
Sparse Matrix Computations is a collection of papers presented at the 1975 Symposium by the same title, held at Argonne National Laboratory. This book is composed of six parts encompassing 27 chapters that contain contributions in several areas of matrix computations and some of the most potential research in numerical linear algebra. The papers are organized into general categories that deal, respectively, with sparse elimination, sparse eigenvalue calculations, optimization, mathematical software for sparse matrix computations, partial differential equations, and applications involving sparse matrix technology. This text presents research on applied numerical analysis but with considerable influence from computer science. In particular, most of the papers deal with the design, analysis, implementation, and application of computer algorithms. Such an emphasis includes the establishment of space and time complexity bounds and to understand the algorithms and the computing environment. This book will prove useful to mathematicians and computer scientists.
Publisher: Academic Press
ISBN: 1483263401
Category : Mathematics
Languages : en
Pages : 468
Book Description
Sparse Matrix Computations is a collection of papers presented at the 1975 Symposium by the same title, held at Argonne National Laboratory. This book is composed of six parts encompassing 27 chapters that contain contributions in several areas of matrix computations and some of the most potential research in numerical linear algebra. The papers are organized into general categories that deal, respectively, with sparse elimination, sparse eigenvalue calculations, optimization, mathematical software for sparse matrix computations, partial differential equations, and applications involving sparse matrix technology. This text presents research on applied numerical analysis but with considerable influence from computer science. In particular, most of the papers deal with the design, analysis, implementation, and application of computer algorithms. Such an emphasis includes the establishment of space and time complexity bounds and to understand the algorithms and the computing environment. This book will prove useful to mathematicians and computer scientists.
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs
Author: Josef Malek
Publisher: SIAM
ISBN: 1611973848
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.
Publisher: SIAM
ISBN: 1611973848
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Mathematical Programming The State of the Art
Author: A. Bachem
Publisher: Springer Science & Business Media
ISBN: 3642688748
Category : Mathematics
Languages : en
Pages : 662
Book Description
In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.
Publisher: Springer Science & Business Media
ISBN: 3642688748
Category : Mathematics
Languages : en
Pages : 662
Book Description
In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.