Mathematics of Oil Recovery PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematics of Oil Recovery PDF full book. Access full book title Mathematics of Oil Recovery by Dominique Guerillot. Download full books in PDF and EPUB format.

Mathematics of Oil Recovery

Mathematics of Oil Recovery PDF Author: Dominique Guerillot
Publisher: Editions TECHNIP
ISBN: 9782710805892
Category : Technology & Engineering
Languages : en
Pages : 388

Book Description


Mathematics of Oil Recovery

Mathematics of Oil Recovery PDF Author: Dominique Guerillot
Publisher: Editions TECHNIP
ISBN: 9782710805892
Category : Technology & Engineering
Languages : en
Pages : 388

Book Description


6th European Conference on the Mathematics of Oil Recovery

6th European Conference on the Mathematics of Oil Recovery PDF Author:
Publisher:
ISBN:
Category : Oil fields
Languages : en
Pages : 448

Book Description


Mathematical Methods and Modelling in Hydrocarbon Exploration and Production

Mathematical Methods and Modelling in Hydrocarbon Exploration and Production PDF Author: Armin Iske
Publisher: Springer Science & Business Media
ISBN: 3540264930
Category : Mathematics
Languages : en
Pages : 452

Book Description
Hydrocarbon exploration and production incorporate great technology challenges for the oil and gas industry. In order to meet the world's future demand for oil and gas, further technological advance is needed, which in turn requires research across multiple disciplines, including mathematics, geophysics, geology, petroleum engineering, signal processing, and computer science. This book addresses important aspects and fundamental concepts in hydrocarbon exploration and production. Moreover, new developments and recent advances in the relevant research areas are discussed, whereby special emphasis is placed on mathematical methods and modelling. The book reflects the multi-disciplinary character of the hydrocarbon production workflow, ranging from seismic data imaging, seismic analysis and interpretation and geological model building, to numerical reservoir simulation. Various challenges concerning the production workflow are discussed in detail. The thirteen chapters of this joint work, authored by international experts from academic and industrial institutions, include survey papers of expository character as well as original research articles. Large parts of the material presented in this book were developed between November 2000 and April 2004 through the European research and training network NetAGES, "Network for Automated Geometry Extraction from Seismic". The new methods described here are currently being implemented as software tools at Schlumberger Stavanger Research, one of the world's largest service providers to the oil industry.

The Mathematics of Oil Recovery

The Mathematics of Oil Recovery PDF Author: Dr. Peter R. King
Publisher: Oxford University Press, USA
ISBN:
Category : Literary Criticism
Languages : en
Pages : 854

Book Description
Based on a conference on mathematical aspects of oil recovery problems, this work reports recent research on fluid flow in oil reservoirs. Particular emphasis is placed on the mathematical and numerical methods used.

Mathematical Theory of Oil and Gas Recovery

Mathematical Theory of Oil and Gas Recovery PDF Author: P. Bedrikovetsky
Publisher: Springer Science & Business Media
ISBN: 9401722056
Category : Science
Languages : en
Pages : 596

Book Description
It is a pleasure to be asked to write the foreword to this interesting new book. When Professor Bedrikovetsky first accepted my invitation to spend an extended sabbatical period in the Department of Mineral Resources Engineering at Imperial College of Science, Technology and Medicine, I hoped it would be a period of fruitful collaboration. This book, a short course and a variety of technical papers are tangible evidence of a successful stay in the UK. I am also pleased that Professor Bedrikovetsky acted on my suggestion to publish this book with Kluwer as part of the petroleum publications for which I am Series Editor. The book derives much of its origin from the unpublished Doctor of Science thesis which Professor Bedrikovetsky prepared in Russian while at the Gubkin Institute. The original DSc contained a number of discrete publications unified by an analytical mathematics approach to fluid flow in petroleum reservoirs. During his sabbatical stay at Imperial College, Professor Bedrikovetsky has refined and extended many of the chapters and has discussed each one with internationally recognised experts in the field. He received great encouragement and editorial advice from Dr Gren Rowan, who pioneered analytical methods in reservoir modelling at BP for many years.

Reservoir Simulation

Reservoir Simulation PDF Author: Zhangxin Chen
Publisher: SIAM
ISBN: 0898717078
Category : Mathematics
Languages : en
Pages : 244

Book Description
Beginning with an overview of classical reservoir engineering and basic reservoir simulation methods, this book then progresses through a discussion of types of flows - single-phase, two-phase, black oil (three-phase), single phase with multi-components, compositional, and thermal. The author provides a thorough glossary of petroleum engineering terms and their units, along with basic flow and transport equations and their unusual features, and corresponding rock and fluid properties. The book also summarises the practical aspects of reservoir simulation, such as data gathering and analysis, and reservoir performance prediction. Suitable as a text for advanced undergraduate and first-year graduate students in geology, petroleum engineering, and applied mathematics; as a reference book; or as a handbook for practitioners in the oil industry. Prerequisites are calculus, basic physics, and some knowledge of partial differential equations and matrix algebra.

An Introduction to Reservoir Simulation Using MATLAB/GNU Octave

An Introduction to Reservoir Simulation Using MATLAB/GNU Octave PDF Author: Knut-Andreas Lie
Publisher: Cambridge University Press
ISBN: 1108492436
Category : Business & Economics
Languages : en
Pages : 677

Book Description
Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Advances in Data, Methods, Models and Their Applications in Geoscience

Advances in Data, Methods, Models and Their Applications in Geoscience PDF Author: DongMei Chen
Publisher: BoD – Books on Demand
ISBN: 9533077379
Category : Science
Languages : en
Pages : 354

Book Description
With growing attention on global environmental and climate change, geoscience has experienced rapid change and development in the last three decades. Many new data, methods and modeling techniques have been developed and applied in various aspects of geoscience. The chapters collected in this book present an excellent profile of the current state of various data, analysis methods and modeling techniques, and demonstrate their applications from hydrology, geology and paleogeomorphology, to geophysics, environmental and climate change. The wide range methods and techniques covered in the book include information systems and technology, global position system (GPS), digital sediment core image analysis, fuzzy set theory for hydrology, spatial interpolation, spectral analysis of geophysical data, GIS-based hydrological models, high resolution geological models, 3D sedimentology, change detection from remote sensing, etc. Besides two comprehensive review articles, most chapters focus on in-depth studies of a particular method or technique.

Multiscale Finite Element Methods

Multiscale Finite Element Methods PDF Author: Yalchin Efendiev
Publisher: Springer Science & Business Media
ISBN: 0387094962
Category : Technology & Engineering
Languages : en
Pages : 242

Book Description
The aim of this monograph is to describe the main concepts and recent - vances in multiscale ?nite element methods. This monograph is intended for thebroaderaudienceincludingengineers,appliedscientists,andforthosewho are interested in multiscale simulations. The book is intended for graduate students in applied mathematics and those interested in multiscale compu- tions. It combines a practical introduction, numerical results, and analysis of multiscale ?nite element methods. Due to the page limitation, the material has been condensed. Each chapter of the book starts with an introduction and description of the proposed methods and motivating examples. Some new techniques are introduced using formal arguments that are justi?ed later in the last chapter. Numerical examples demonstrating the signi?cance of the proposed methods are presented in each chapter following the description of the methods. In the last chapter, we analyze a few representative cases with the objective of demonstrating the main error sources and the convergence of the proposed methods. A brief outline of the book is as follows. The ?rst chapter gives a general introductiontomultiscalemethodsandanoutlineofeachchapter.Thesecond chapter discusses the main idea of the multiscale ?nite element method and its extensions. This chapter also gives an overview of multiscale ?nite element methods and other related methods. The third chapter discusses the ext- sion of multiscale ?nite element methods to nonlinear problems. The fourth chapter focuses on multiscale methods that use limited global information.

Polyhedral Methods in Geosciences

Polyhedral Methods in Geosciences PDF Author: Daniele Antonio Di Pietro
Publisher: Springer Nature
ISBN: 3030693635
Category : Mathematics
Languages : en
Pages : 342

Book Description
The last few years have witnessed a surge in the development and usage of discretization methods supporting general meshes in geoscience applications. The need for general polyhedral meshes in this context can arise in several situations, including the modelling of petroleum reservoirs and basins, CO2 and nuclear storage sites, etc. In the above and other situations, classical discretization methods are either not viable or require ad hoc modifications that add to the implementation complexity. Discretization methods able to operate on polyhedral meshes and possibly delivering arbitrary-order approximations constitute in this context a veritable technological jump. The goal of this monograph is to establish a state-of-the-art reference on polyhedral methods for geoscience applications by gathering contributions from top-level research groups working on this topic. This book is addressed to graduate students and researchers wishing to deepen their knowledge of advanced numerical methods with a focus on geoscience applications, as well as practitioners of the field.