Author: Vladimir Dobrosavljevic
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583
Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.
Conductor Insulator Quantum Phase Transitions
Author: Vladimir Dobrosavljevic
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583
Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583
Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.
Understanding Quantum Phase Transitions
Author: Lincoln Carr
Publisher: CRC Press
ISBN: 1439802610
Category : Science
Languages : en
Pages : 754
Book Description
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
Publisher: CRC Press
ISBN: 1439802610
Category : Science
Languages : en
Pages : 754
Book Description
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit
Electrodynamics of Quantum-Critical Conductors and Superconductors
Author: Uwe Santiago Pracht
Publisher: Springer
ISBN: 3319728024
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This thesis presents and discusses recent optical low-temperature experiments on disordered NbN, granular Al thin-films, and the heavy-fermion compound CeCoIn5, offering a unified picture of quantum-critical superconductivity. It provides a concise introduction to the respective theoretical models employed to interpret the experimental results, and guides readers through in-depth calculations supplemented with supportive figures in order to both retrace the interpretations and span the bridge between experiment and state-of-the art theory.
Publisher: Springer
ISBN: 3319728024
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This thesis presents and discusses recent optical low-temperature experiments on disordered NbN, granular Al thin-films, and the heavy-fermion compound CeCoIn5, offering a unified picture of quantum-critical superconductivity. It provides a concise introduction to the respective theoretical models employed to interpret the experimental results, and guides readers through in-depth calculations supplemented with supportive figures in order to both retrace the interpretations and span the bridge between experiment and state-of-the art theory.
Handbook on the Physics and Chemistry of Rare Earths
Author:
Publisher: Elsevier
ISBN: 0444637052
Category : Science
Languages : en
Pages : 482
Book Description
Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and publishes two volumes a year. - Presents up-to-date overviews of new developments in the field of rare earths, covering both their physics and chemistry - Contains Individual chapters that are comprehensive and broad, with critical reviews - Provides contributions from highly experienced, invited experts
Publisher: Elsevier
ISBN: 0444637052
Category : Science
Languages : en
Pages : 482
Book Description
Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and publishes two volumes a year. - Presents up-to-date overviews of new developments in the field of rare earths, covering both their physics and chemistry - Contains Individual chapters that are comprehensive and broad, with critical reviews - Provides contributions from highly experienced, invited experts
The Mott Metal-Insulator Transition
Author: Florian Gebhard
Publisher: Springer
ISBN: 3540148582
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.
Publisher: Springer
ISBN: 3540148582
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.
Strongly Correlated Electrons in Two Dimensions
Author: Sergey Kravchenko
Publisher: CRC Press
ISBN: 9814745383
Category : Science
Languages : en
Pages : 244
Book Description
The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.
Publisher: CRC Press
ISBN: 9814745383
Category : Science
Languages : en
Pages : 244
Book Description
The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.
2d Quantum Metamaterials: Proceedings Of The 2018 Nist Workshop - 2018 Nist Workshop
Author: Wiley P Kirk
Publisher: World Scientific
ISBN: 9811206074
Category : Science
Languages : en
Pages : 157
Book Description
Exciting developments in strategic areas of science and engineering makes for possible new engineered structures identified as quantum metamaterials. These new structures offer unusual properties that involve fundamental concepts such as entangled quantum states, superposition, quantum coherence, analog quantum simulation, etc., opening a new era of technological advancement. This manuscript presents the output of a recent workshop held at the National Institute of Standards and Technology in 2018. It covers the key scientific ideas, various technical approaches under investigation, and the potential technological outcomes in a new field of research.
Publisher: World Scientific
ISBN: 9811206074
Category : Science
Languages : en
Pages : 157
Book Description
Exciting developments in strategic areas of science and engineering makes for possible new engineered structures identified as quantum metamaterials. These new structures offer unusual properties that involve fundamental concepts such as entangled quantum states, superposition, quantum coherence, analog quantum simulation, etc., opening a new era of technological advancement. This manuscript presents the output of a recent workshop held at the National Institute of Standards and Technology in 2018. It covers the key scientific ideas, various technical approaches under investigation, and the potential technological outcomes in a new field of research.
Holographic Quantum Matter
Author: Sean A. Hartnoll
Publisher: MIT Press
ISBN: 0262038439
Category : Science
Languages : en
Pages : 407
Book Description
A comprehensive overview of holographic methods in quantum matter, written by pioneers in the field. This book, written by pioneers in the field, offers a comprehensive overview of holographic methods in quantum matter. It covers influential developments in theoretical physics, making the key concepts accessible to researchers and students in both high energy and condensed matter physics. The book provides a unique combination of theoretical and historical context, technical results, extensive references to the literature, and exercises. It will give readers the ability to understand the important problems in the field, both those that have been solved and those that remain unsolved, and will enable them to engage directly with the current literature. The book describes a particular interface between condensed matter physics, gravitational physics, and string and quantum field theory made possible by holographic duality. The chapters cover such topics as the essential workings of the holographic correspondence; strongly interacting quantum matter at a fixed commensurate density; compressible quantum matter with a variable density; transport in quantum matter; the holographic description of symmetry broken phases; and the relevance of the topics covered to experimental challenges in specific quantum materials. Holographic Quantum Matter promises to be the definitive presentation of this material.
Publisher: MIT Press
ISBN: 0262038439
Category : Science
Languages : en
Pages : 407
Book Description
A comprehensive overview of holographic methods in quantum matter, written by pioneers in the field. This book, written by pioneers in the field, offers a comprehensive overview of holographic methods in quantum matter. It covers influential developments in theoretical physics, making the key concepts accessible to researchers and students in both high energy and condensed matter physics. The book provides a unique combination of theoretical and historical context, technical results, extensive references to the literature, and exercises. It will give readers the ability to understand the important problems in the field, both those that have been solved and those that remain unsolved, and will enable them to engage directly with the current literature. The book describes a particular interface between condensed matter physics, gravitational physics, and string and quantum field theory made possible by holographic duality. The chapters cover such topics as the essential workings of the holographic correspondence; strongly interacting quantum matter at a fixed commensurate density; compressible quantum matter with a variable density; transport in quantum matter; the holographic description of symmetry broken phases; and the relevance of the topics covered to experimental challenges in specific quantum materials. Holographic Quantum Matter promises to be the definitive presentation of this material.
Electronic Phase Separation in Magnetic and Superconducting Materials
Author: Maxim Yu. Kagan
Publisher: Springer Nature
ISBN: 3031554671
Category :
Languages : en
Pages : 385
Book Description
Publisher: Springer Nature
ISBN: 3031554671
Category :
Languages : en
Pages : 385
Book Description
Phase Transition Approach To High Temperature Superconductivity - Universal Properties Of Cuprate Superconductors
Author: Toni Schneider
Publisher: World Scientific
ISBN: 1783261633
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort — which still persists after more than a decade — to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications.During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question.This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course.
Publisher: World Scientific
ISBN: 1783261633
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort — which still persists after more than a decade — to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications.During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question.This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course.