Concrete Structures for Oil and Gas Fields in Hostile Marine Environments PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Concrete Structures for Oil and Gas Fields in Hostile Marine Environments PDF full book. Access full book title Concrete Structures for Oil and Gas Fields in Hostile Marine Environments by fib Fédération internationale du béton. Download full books in PDF and EPUB format.

Concrete Structures for Oil and Gas Fields in Hostile Marine Environments

Concrete Structures for Oil and Gas Fields in Hostile Marine Environments PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883940908
Category : Technology & Engineering
Languages : en
Pages : 38

Book Description
Concrete offshore structures have been successfully delivered to the international oil and gas industry for more than 35 years. Some 50 major concrete platforms of different shapes and sizes, supporting large production and storage facilities, are currently operating in hostile marine environments worldwide and have excellent service records. After some years with little development activity, today there is a renewed interest in robust structures for the Arctic environment, for Liquefied Natural Gas (LNG) terminals and for special floating barges and vessels. Currently, concrete solutions are being considered for projects north and east of Russia, north of Norway and offshore Newfoundland, among others. Concrete is also in increasing demand in built up coastal areas for a variety of purposes such as harbour works, tunnels and bridges, cargo terminals, parking garages and sea front housing developments where durability and robustness are essential. The mandate of fib Task Group 1.5 was to gather the experience and know-how pertinent to the development, design and execution of offshore concrete structures, and to elaborate on the applicability of concrete structures for the Arctic environments. The findings of the Task Group are presented in fib Bulletin 50. The report is based on experience gained from the design, execution and performance of a number of offshore concrete structures around the world and in particular in the North Sea. Ongoing inspections have shown excellent durability and structural performance, even in structures that have exceeded their design lives, in conditions often characterized by extreme wave loads, freezing conditions, hurricane force winds and seismic actions. This forms the "background" for discussing the applicability of concrete structures for the Arctic regions. Although to a large extent dedicated to oil- and gas- related structures, the report is also relevant to other marine applications where the same design principles, material selection criteria and construction methods apply. fib Bulletin 50 is not in itself a code, nor is it a textbook. Rather, extensive reference is made to proven and readily available design codes and construction guides, as well as relevant papers and proceedings and other fib publications.

Concrete Structures for Oil and Gas Fields in Hostile Marine Environments

Concrete Structures for Oil and Gas Fields in Hostile Marine Environments PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883940908
Category : Technology & Engineering
Languages : en
Pages : 38

Book Description
Concrete offshore structures have been successfully delivered to the international oil and gas industry for more than 35 years. Some 50 major concrete platforms of different shapes and sizes, supporting large production and storage facilities, are currently operating in hostile marine environments worldwide and have excellent service records. After some years with little development activity, today there is a renewed interest in robust structures for the Arctic environment, for Liquefied Natural Gas (LNG) terminals and for special floating barges and vessels. Currently, concrete solutions are being considered for projects north and east of Russia, north of Norway and offshore Newfoundland, among others. Concrete is also in increasing demand in built up coastal areas for a variety of purposes such as harbour works, tunnels and bridges, cargo terminals, parking garages and sea front housing developments where durability and robustness are essential. The mandate of fib Task Group 1.5 was to gather the experience and know-how pertinent to the development, design and execution of offshore concrete structures, and to elaborate on the applicability of concrete structures for the Arctic environments. The findings of the Task Group are presented in fib Bulletin 50. The report is based on experience gained from the design, execution and performance of a number of offshore concrete structures around the world and in particular in the North Sea. Ongoing inspections have shown excellent durability and structural performance, even in structures that have exceeded their design lives, in conditions often characterized by extreme wave loads, freezing conditions, hurricane force winds and seismic actions. This forms the "background" for discussing the applicability of concrete structures for the Arctic regions. Although to a large extent dedicated to oil- and gas- related structures, the report is also relevant to other marine applications where the same design principles, material selection criteria and construction methods apply. fib Bulletin 50 is not in itself a code, nor is it a textbook. Rather, extensive reference is made to proven and readily available design codes and construction guides, as well as relevant papers and proceedings and other fib publications.

Recommendations for the design of concrete sea structures

Recommendations for the design of concrete sea structures PDF Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 40

Book Description
At the FIP Symposiu m on Concrete Sea Structures, which was held on 28-29 September 1 972 in Tbilisi, Georgia, the participants unanimously agreed that c oncrete was bound to play a major if not the leading part in the rapidly developing field of offshore construction. It was also agreed that the discovery of oil and gas in the North Sea had produced an immediate and exciting challenge in the demand for the construction of fixed structures in marine environments which, in terms of hostile natura! forces, would far exceed anything tackled by engineers to date. It was therefore decided to set up an FIP Commission on Concrete Sea Structures under the chairmanship of Mr Fr,óde Hansen which would report to the FIP Seventh Congress in New York in May 1974 . It seemed natura! to divide the tasks of the Commission into three working groups: Design, Materials, and Construction Methods. It soon became apparent that the demands for structures subjected to deep and hostile waters were so great and so pressing that it was decided to accelerate the work of the Design and Materials Working Groups, and to produce the first edition of these Recommendations before the New York Congres s . The Chairmen for the two Working Groups were Mr Kurt Eriksson and Dr Odd Gjprv respectively. The publication of these Recommendations has been made possible by the li vely interest of these two groups and by the valuable assistance of Mr D. Palmer and Mr B. Spratt of the C ement and Concrete Association and Mr M. D. Hazen of Sir Robert McAlpine & Sons Ltd. The Recommendations have been published with the approval of the FIP Administrati ve Council. The work of the Construction Methods Working Group has not been included in this edition since practical construction experience in this most challenging field is still quite limited. The successful completion of the Ekofisk Storage Tank has added tremendously to obtaining practical experience, and this, with the fact that two larger concrete offshore platforms will soon be under c onstruction, offers the promise that future editions will be augmented by some very valuable practical construction experience.

2018 fib Awards for Outstanding Concrete Structures

2018 fib Awards for Outstanding Concrete Structures PDF Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883941270
Category : Technology & Engineering
Languages : en
Pages : 44

Book Description
The fib Awards for Outstanding Concrete Structures are attributed every four years at the fib Congress, with the goal of enhancing the international recognition of concrete structures that demonstrate the versatility of concrete as a structural medium. The award consists of a bronze plaque to be displayed on the structure, and certificates presented to the main parties responsible for the work. Applications are invited by the fib secretariat via the National Member Groups. Information on the competition is also made available on the fib’s website, and in the newsletter fib-news published in Structural Concrete. The submitted structures must have been completed during the four years prior to the year of the Congress at which the awards are attributed. The jury may accept an older structure, completed one or two years before, provided that it was not already submitted for the previous award attribution (Mumbai, 2014). The submitted structures must also have the support of an fib Head of Delegation or National Member Group Secretary in order to confirm the authenticity of the indicated authors. Entries consist of the completed entry form, three to five representative photos of the whole structure and/or any important details or plans, and short summary texts explaining: - the history of the project; - description of the structure; - particularities of its realisation (difficulties encountered, special solutions found, etc.). A jury designated by the Presidium selects the winners. The awards are attributed in two categories, Civil Engineering Structures (including bridges) and Buildings. Two or three ‘Winners’ and two to four ‘Special Mention’ recipients are selected in each category, depending on the number of entries received. The jury takes into account criteria such as: - design aspects, including aesthetics and design detailing; - construction practice and quality of work; - environmental aspects of the design and its construction; - durability and sustainability aspects; - significance of the contribution made by the entry to the development and improvement of concrete construction. The decisions of the jury are definitive and cannot be challenged. They are unveiled at a special ceremony during the fib Congress in Melbourne.

Precast-concrete buildings in seismic areas

Precast-concrete buildings in seismic areas PDF Author: FIB – Féd. Int. du Béton
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941181
Category : Technology & Engineering
Languages : en
Pages : 290

Book Description
This document has a broad scope and is not focussed on design issues. Precast construction under seismic conditions is treated as a whole. The main principles of seismic design of different structural systems, their behavior and their construction techniques are presented through rules, construction steps and sequences, procedures, and details that should lead to precast structures built in seismic areas complying with the fundamental performance requirements of collapse prevention and life safety in major earthquakes and limited damage in more frequent earthquakes. The content of this document is largely limited to conventional precast construction and, although some information is provided on the well-known “PRESSS technology” (jointed ductile dry connections), this latter solution is not treated in detail in this document. The general overview, contained in this document, of alternative structural systems and connection solutions available to achieve desired performance levels, intends to provide engineers, architects, clients, and end-users (in general) with a better appreciation of the wide range of applications that modern precast concrete technology can have in various types of construction from industrial to commercial as well as residential. Lastly, the emphasis on practical aspects, from conceptual design to connection detailing, aims to help engineers to move away from the habit of blindly following prescriptive codes in their design, but instead go back to basic principles, in order to achieve a more robust understanding, and thus control, of the seismic behaviour of the structural system as a whole, as well as of its components and individual connections.

Concrete Construction Engineering Handbook

Concrete Construction Engineering Handbook PDF Author: Edward G. Nawy
Publisher: CRC Press
ISBN: 1420007653
Category : Technology & Engineering
Languages : en
Pages : 1586

Book Description
The Concrete Construction Engineering Handbook, Second Edition provides in depth coverage of concrete construction engineering and technology. It features state-of-the-art discussions on what design engineers and constructors need to know about concrete, focusing on - The latest advances in engineered concrete materials Reinforced concrete construction Specialized construction techniques Design recommendations for high performance With the newly revised edition of this essential handbook, designers, constructors, educators, and field personnel will learn how to produce the best and most durably engineered constructed facilities.

Structural Concrete Textbook, Volume 4

Structural Concrete Textbook, Volume 4 PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883940940
Category : Technology & Engineering
Languages : en
Pages : 203

Book Description
The second edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) to fib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.

Structural Concrete Textbook, Volume 5

Structural Concrete Textbook, Volume 5 PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883941025
Category : Technology & Engineering
Languages : en
Pages : 482

Book Description
The third edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) tofib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.

Innovative Materials and Techniques in Concrete Construction

Innovative Materials and Techniques in Concrete Construction PDF Author: Michael N. Fardis
Publisher: Springer Science & Business Media
ISBN: 9400719973
Category : Technology & Engineering
Languages : en
Pages : 386

Book Description
Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by the top experts in the field of concrete structures, namely those currently active in the field’s leading and truly international scientific and technical association: the International Federation of Structural Concrete (fib) www.fib-international.org. Audience: Practicing engineers and firms, academics, researchers and graduate students, will all find the book timely, informative and very interesting.

Tailor Made Concrete Structures

Tailor Made Concrete Structures PDF Author: Joost C. Walraven
Publisher: CRC Press
ISBN: 1439828415
Category : Technology & Engineering
Languages : en
Pages : 316

Book Description
In recent years knowledge of concrete and concrete structures has increased, as has its applications. New types of concrete challenged scientists and engineers, and ecological constraints encouraged the implementation of life cycle design of concrete structures, moving the focus more and more to maintenance and uprating of structures. And since bui

Integrated life cycle assessment of concrete structures

Integrated life cycle assessment of concrete structures PDF Author: fib Fédération Internationale du béton
Publisher: fib Fédération Internationale du béton
ISBN: 2883941114
Category : Technology & Engineering
Languages : en
Pages : 70

Book Description
Concrete is after water the second most used material. The production of concrete in the industrialized countries annually amounts to 1.5-3 tonne per capita and is still increasing. This has significant impact on the environment. Thus there is an urgent need for more effective use of concrete in structures and their assessment. The scope of activities of the fib Task Group 3.7 was to define the methodology for integrated life-cycle assessment of concrete structures considering main essential aspects of sustainability such as: environmental, economic and social aspects throughout the whole life of the concrete structure. The aim was to set up basic methodology to be helpful in development of design and assessment tools focused on sustainability of concrete structure within the whole life cycle. Integrated Life Cycle Assessment (ILCA) represents an advanced approach integrating different aspects of sustainability in one complex assessment procedure. The integrated approach is necessary to insure that the structure will serve during the whole expected service life with a maximum functional quality and safety, while environmental and economic loads will be kept at a low level. The effective application and quality of results are dependent on the availability of relevant input data obtained using a detailed inventory analysis, based on specific regional conditions. The evaluation of the real level of total quality of concrete structure should be based on a detailed ILCA analysis using regionally or locally relevant data sets.