Concepts from Tensor Analysis and Differential Geometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Concepts from Tensor Analysis and Differential Geometry PDF full book. Access full book title Concepts from Tensor Analysis and Differential Geometry by Tracy Y. Thomas. Download full books in PDF and EPUB format.

Concepts from Tensor Analysis and Differential Geometry

Concepts from Tensor Analysis and Differential Geometry PDF Author: Tracy Y. Thomas
Publisher: Elsevier
ISBN: 1483263711
Category : Mathematics
Languages : en
Pages : 128

Book Description
Concepts from Tensor Analysis and Differential Geometry discusses coordinate manifolds, scalars, vectors, and tensors. The book explains some interesting formal properties of a skew-symmetric tensor and the curl of a vector in a coordinate manifold of three dimensions. It also explains Riemann spaces, affinely connected spaces, normal coordinates, and the general theory of extension. The book explores differential invariants, transformation groups, Euclidean metric space, and the Frenet formulae. The text describes curves in space, surfaces in space, mixed surfaces, space tensors, including the formulae of Gaus and Weingarten. It presents the equations of two scalars K and Q which can be defined over a regular surface S in a three dimensional Riemannian space R. In the equation, the scalar K, which is an intrinsic differential invariant of the surface S, is known as the total or Gaussian curvature and the scalar U is the mean curvature of the surface. The book also tackles families of parallel surfaces, developable surfaces, asymptotic lines, and orthogonal ennuples. The text is intended for a one-semester course for graduate students of pure mathematics, of applied mathematics covering subjects such as the theory of relativity, fluid mechanics, elasticity, and plasticity theory.

Concepts from Tensor Analysis and Differential Geometry

Concepts from Tensor Analysis and Differential Geometry PDF Author: Tracy Y. Thomas
Publisher: Elsevier
ISBN: 1483263711
Category : Mathematics
Languages : en
Pages : 128

Book Description
Concepts from Tensor Analysis and Differential Geometry discusses coordinate manifolds, scalars, vectors, and tensors. The book explains some interesting formal properties of a skew-symmetric tensor and the curl of a vector in a coordinate manifold of three dimensions. It also explains Riemann spaces, affinely connected spaces, normal coordinates, and the general theory of extension. The book explores differential invariants, transformation groups, Euclidean metric space, and the Frenet formulae. The text describes curves in space, surfaces in space, mixed surfaces, space tensors, including the formulae of Gaus and Weingarten. It presents the equations of two scalars K and Q which can be defined over a regular surface S in a three dimensional Riemannian space R. In the equation, the scalar K, which is an intrinsic differential invariant of the surface S, is known as the total or Gaussian curvature and the scalar U is the mean curvature of the surface. The book also tackles families of parallel surfaces, developable surfaces, asymptotic lines, and orthogonal ennuples. The text is intended for a one-semester course for graduate students of pure mathematics, of applied mathematics covering subjects such as the theory of relativity, fluid mechanics, elasticity, and plasticity theory.

TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY PDF Author: PRASUN KUMAR NAYAK
Publisher: PHI Learning Pvt. Ltd.
ISBN: 812034507X
Category : Mathematics
Languages : en
Pages : 551

Book Description
Primarily intended for the undergraduate and postgraduate students of mathematics, this textbook covers both geometry and tensor in a single volume. This book aims to provide a conceptual exposition of the fundamental results in the theory of tensors. It also illustrates the applications of tensors to differential geometry, mechanics and relativity. Organized in ten chapters, it provides the origin and nature of the tensor along with the scope of the tensor calculus. Besides this, it also discusses N-dimensional Riemannian space, characteristic peculiarity of Riemannian space, intrinsic property of surfaces, and properties and transformation of Christoffel’s symbols. Besides the students of mathematics, this book will be equally useful for the postgraduate students of physics. KEY FEATURES : Contains 250 worked out examples Includes more than 350 unsolved problems Gives thorough foundation in Tensors

Tensors, Differential Forms, and Variational Principles

Tensors, Differential Forms, and Variational Principles PDF Author: David Lovelock
Publisher: Courier Corporation
ISBN: 048613198X
Category : Mathematics
Languages : en
Pages : 402

Book Description
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.

Tensor Analysis on Manifolds

Tensor Analysis on Manifolds PDF Author: Richard L. Bishop
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290

Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists PDF Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308

Book Description


Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Introduction to Tensor Analysis and the Calculus of Moving Surfaces PDF Author: Pavel Grinfeld
Publisher: Springer Science & Business Media
ISBN: 1461478677
Category : Mathematics
Languages : en
Pages : 303

Book Description
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.

Concepts from Tensor Analysis and Differential Geometry

Concepts from Tensor Analysis and Differential Geometry PDF Author: Tracy Yerkes Thomas
Publisher:
ISBN: 9781258786854
Category :
Languages : en
Pages : 126

Book Description


Manifolds, Tensors and Forms

Manifolds, Tensors and Forms PDF Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343

Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.

Vector and Tensor Analysis with Applications

Vector and Tensor Analysis with Applications PDF Author: A. I. Borisenko
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292

Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.

Differential Geometry

Differential Geometry PDF Author: Erwin Kreyszig
Publisher: Courier Corporation
ISBN: 0486318621
Category : Mathematics
Languages : en
Pages : 384

Book Description
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.