Author: R. Glowinski
Publisher: SIAM
ISBN: 9780898712643
Category : Science
Languages : en
Pages : 464
Book Description
"Proceedings of the Ninth International Conference on Computing Methods in Applied Sciences and Engineering, Paris, France, January 29-February 2, 1990"--T.p. verso.
Computing Methods in Applied Sciences and Engineering
Author: R. Glowinski
Publisher: SIAM
ISBN: 9780898712643
Category : Science
Languages : en
Pages : 464
Book Description
"Proceedings of the Ninth International Conference on Computing Methods in Applied Sciences and Engineering, Paris, France, January 29-February 2, 1990"--T.p. verso.
Publisher: SIAM
ISBN: 9780898712643
Category : Science
Languages : en
Pages : 464
Book Description
"Proceedings of the Ninth International Conference on Computing Methods in Applied Sciences and Engineering, Paris, France, January 29-February 2, 1990"--T.p. verso.
Computing Methods in Applied Sciences and Engineering, 1977. Third International Symposium, December 5-9, 1977, IRIA LABORIA, Institut de Recherche d`Informatique et d`Automatique
Author: R. Glowinski
Publisher: Springer
ISBN: 3540354115
Category : Mathematics
Languages : en
Pages : 386
Book Description
Publisher: Springer
ISBN: 3540354115
Category : Mathematics
Languages : en
Pages : 386
Book Description
Computing Methods in Applied Sciences and Engineering, 1977, I
Author: R. Glowinski
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 414
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 414
Book Description
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Computational Problems in Science and Engineering
Author: Nikos Mastorakis
Publisher: Springer
ISBN: 3319157655
Category : Technology & Engineering
Languages : en
Pages : 483
Book Description
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.
Publisher: Springer
ISBN: 3319157655
Category : Technology & Engineering
Languages : en
Pages : 483
Book Description
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.
Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations
Author: Snehashish Chakraverty
Publisher: World Scientific
ISBN: 9811230226
Category : Computers
Languages : en
Pages : 192
Book Description
The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Publisher: World Scientific
ISBN: 9811230226
Category : Computers
Languages : en
Pages : 192
Book Description
The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Introduction to Numerical Continuation Methods
Author: Eugene L. Allgower
Publisher: SIAM
ISBN: 9780898719154
Category : Mathematics
Languages : en
Pages : 413
Book Description
Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.
Publisher: SIAM
ISBN: 9780898719154
Category : Mathematics
Languages : en
Pages : 413
Book Description
Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.
Computational Methods for Applied Inverse Problems
Author: Yanfei Wang
Publisher: Walter de Gruyter
ISBN: 3110259052
Category : Mathematics
Languages : en
Pages : 552
Book Description
Nowadays inverse problems and applications in science and engineering represent an extremely active research field. The subjects are related to mathematics, physics, geophysics, geochemistry, oceanography, geography and remote sensing, astronomy, biomedicine, and other areas of applications. This monograph reports recent advances of inversion theory and recent developments with practical applications in frontiers of sciences, especially inverse design and novel computational methods for inverse problems. The practical applications include inverse scattering, chemistry, molecular spectra data processing, quantitative remote sensing inversion, seismic imaging, oceanography, and astronomical imaging. The book serves as a reference book and readers who do research in applied mathematics, engineering, geophysics, biomedicine, image processing, remote sensing, and environmental science will benefit from the contents since the book incorporates a background of using statistical and non-statistical methods, e.g., regularization and optimization techniques for solving practical inverse problems.
Publisher: Walter de Gruyter
ISBN: 3110259052
Category : Mathematics
Languages : en
Pages : 552
Book Description
Nowadays inverse problems and applications in science and engineering represent an extremely active research field. The subjects are related to mathematics, physics, geophysics, geochemistry, oceanography, geography and remote sensing, astronomy, biomedicine, and other areas of applications. This monograph reports recent advances of inversion theory and recent developments with practical applications in frontiers of sciences, especially inverse design and novel computational methods for inverse problems. The practical applications include inverse scattering, chemistry, molecular spectra data processing, quantitative remote sensing inversion, seismic imaging, oceanography, and astronomical imaging. The book serves as a reference book and readers who do research in applied mathematics, engineering, geophysics, biomedicine, image processing, remote sensing, and environmental science will benefit from the contents since the book incorporates a background of using statistical and non-statistical methods, e.g., regularization and optimization techniques for solving practical inverse problems.
Applied Scientific Computing
Author: Peter R. Turner
Publisher: Springer
ISBN: 3319895753
Category : Computers
Languages : en
Pages : 280
Book Description
This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.
Publisher: Springer
ISBN: 3319895753
Category : Computers
Languages : en
Pages : 280
Book Description
This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.
Splitting Methods in Communication, Imaging, Science, and Engineering
Author: Roland Glowinski
Publisher: Springer
ISBN: 3319415891
Category : Mathematics
Languages : en
Pages : 822
Book Description
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
Publisher: Springer
ISBN: 3319415891
Category : Mathematics
Languages : en
Pages : 822
Book Description
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.