Computer Simulation of Porous Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computer Simulation of Porous Materials PDF full book. Access full book title Computer Simulation of Porous Materials by Kim E. Jelfs. Download full books in PDF and EPUB format.

Computer Simulation of Porous Materials

Computer Simulation of Porous Materials PDF Author: Kim E. Jelfs
Publisher: Royal Society of Chemistry
ISBN: 1788019008
Category : Computers
Languages : en
Pages : 325

Book Description
This book covers key approaches in the modelling of porous materials, with a focus on how these can be used for structure prediction and to rationalise or predict a range of properties.

Computer Simulation of Porous Materials

Computer Simulation of Porous Materials PDF Author: Kim Jelfs
Publisher: Royal Society of Chemistry
ISBN: 1839163321
Category : Technology & Engineering
Languages : en
Pages : 280

Book Description
Computer Simulation of Porous Materials covers the key approaches in the modelling of porous materials, with a focus on how these can be used for structure prediction and to either rationalise or predict a range of properties including sorption, diffusion, mechanical, spectroscopic and catalytic. The book covers the full breadth of (micro)porous materials, from inorganic (zeolites), to organic including porous polymers and porous molecular materials, and hybrid materials (metal-organic frameworks). Through chapters focusing on techniques for specific types of applications and properties, the book outlines the challenges and opportunities in applying approaches and methods to different classes of systems, including a discussion of high-throughput screening. There is a strong forward-looking focus, to identify where increased computer power or artificial intelligence techniques such as machine learning have the potential to open up new avenues of research. Edited by a world leader in the field, this title provides a valuable resource for not only computational researchers, but also gives an overview for experimental researchers. It is presented at a level accessible to advanced undergraduates, postgraduates and researchers wishing to learn more about the topic.

Computer Simulation of Porous Materials

Computer Simulation of Porous Materials PDF Author: Kim E. Jelfs
Publisher: Royal Society of Chemistry
ISBN: 1788019008
Category : Computers
Languages : en
Pages : 325

Book Description
This book covers key approaches in the modelling of porous materials, with a focus on how these can be used for structure prediction and to rationalise or predict a range of properties.

Mathematical and Numerical Modeling in Porous Media

Mathematical and Numerical Modeling in Porous Media PDF Author: Martin A. Diaz Viera
Publisher: CRC Press
ISBN: 0203113888
Category : Mathematics
Languages : en
Pages : 370

Book Description
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete

Multiphysics in Porous Materials

Multiphysics in Porous Materials PDF Author: Zhen (Leo) Liu
Publisher: Springer
ISBN: 3319930281
Category : Technology & Engineering
Languages : en
Pages : 431

Book Description
This book summarizes, defines, and contextualizes multiphysics with an emphasis on porous materials. It covers various essential aspects of multiphysics, from history, definition, and scope to mathematical theories, physical mechanisms, and numerical implementations. The emphasis on porous materials maximizes readers’ understanding as these substances are abundant in nature and a common breeding ground of multiphysical phenomena, especially complicated multiphysics. Dr. Liu’s lucid and easy-to-follow presentation serve as a blueprint on the use of multiphysics as a leading edge technique for computer modeling. The contents are organized to facilitate the transition from familiar, monolithic physics such as heat transfer and pore water movement to state-of-the-art applications involving multiphysics, including poroelasticity, thermohydro-mechanical processes, electrokinetics, electromagnetics, fluid dynamics, fluid structure interaction, and electromagnetomechanics. This volume serves as both a general reference and specific treatise for various scientific and engineering disciplines involving multiphysics simulation and porous materials.

Fundamental Problems in Porous Materials

Fundamental Problems in Porous Materials PDF Author: Zhanping Xu
Publisher:
ISBN: 9781321979534
Category :
Languages : en
Pages : 199

Book Description
Porous materials have attracted massive scientific and technological interest because of their extremely high surface-to-volume ratio, molecular tunability in construction, and surface-based applications. Through my PhD work, porous materials were engineered to meet the design in selective binding, self-healing, and energy damping. For example, crystalline MOFs with pore size spanning from a few angstroms to a couple of nanometers were chemically engineered to show 120 times more efficiency in binding of large molecules. In addition, we found building blocks released from those crystals can be further patched back through a healing process at ambient and low temperatures down to -56 °C. When building blocks are replaced with graphenes, ultra-flyweight aerogels with pore size larger than 100 nm were made to delay shock waves. More stable rigid porous metal with larger pores (~um) was also fabricated, and its performance and survivability are under investigation. Aside from experimental studies, we also successfully applied numerical simulations to study the mutual interaction between the nonplanar liquid-solid interface and colloidal particles during the freezing of the colloidal suspensions. Colloidal particles can be either rejected or engulfed by the evolving interface depending on the freezing speed and strength of interface-particle interaction. Our interactive simulation was achieved by programming both simulation module and visualization module on high performance GPU devices.

Computer Simulation of Chemical Reactions in Porous Materials

Computer Simulation of Chemical Reactions in Porous Materials PDF Author: Christoffer Heath Turner
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Book Description
Keywords: molecule, confine, simulation, nanopore, carbon, reaction, Monte Carlo, ACT, TST, rate, RxMC, catalysis, equilibrium, selectivity.

Mathematical and Numerical Modeling in Porous Media

Mathematical and Numerical Modeling in Porous Media PDF Author: Martin A. Diaz Viera
Publisher: CRC Press
ISBN: 041566537X
Category : Mathematics
Languages : en
Pages : 372

Book Description
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.

Computational Methods for Flow and Transport in Porous Media

Computational Methods for Flow and Transport in Porous Media PDF Author: J.M. Crolet
Publisher: Springer Science & Business Media
ISBN: 9401711143
Category : Science
Languages : en
Pages : 372

Book Description
The first Symposium on Recent Advances in Problems of Flow and Transport in Porous Media was held in Marrakech in June '96 and has provided a focus for the utilization of computer methods for solving the many complex problems encountered in the field of solute transport in porous media. This symposium has been successful in bringing together scientists, physicists, hydrogeologists, researchers in soil and fluid mechanics and engineers involved in this multidisciplinary subject. It is clear that the utilization of computer-based models in this domain is still rapidly expanding and that new and novel solutions are being developed. The contributed papers which form this book reflect the recent advances, in particular with respect to new methods, inverse problems, reactive transport, unsaturated media and upscaling. These have been subdivided into the following sections: I. Numerical methods II. Mass transport and heat transfer III. Comparison with experimentation and simulation of real cases This book contains reviewed articles of the top presentations held during the International Symposium on Computer Methods in Porous Media Engineering which took place in Giens (France) in October 1998. All of the presentations and the optimism shown during the meeting provided further evidence that computer modeling is making remarkable progress and is indeed becoming an essential toolkit in the field of porous media and solute transport. I believe that the content of this book provides evidence of this and furthermore gives a comprehensive review of the theoretical developments and applications.

Porous Media

Porous Media PDF Author: Wolfgang Ehlers
Publisher: Springer Science & Business Media
ISBN: 3662049996
Category : Technology & Engineering
Languages : en
Pages : 459

Book Description
The present volume offers a state-of-the-art report on the various recent sci entific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and mul tiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisti cated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems. In many branches of engineering just as in applied natural sciences like bio- and chemomechanics, one often has to deal with continuum mechanical problems which cannot be uniquely classified within the well-known disci plines of either "solid mechanics" or "fluid mechanics". These problems, characterized by the fact that they require a unified treatment of volumetri cally coupled solid-fluid aggregates; basically fall into the categories of either mixtures or porous media. Following this, there is a broad variety of problems ranging in this category as for example the investigation of reacting fluid mix tures or solid-fluid suspensions as well as the investigation of the coupled solid deformation and pore-fluid flow behaviour of liquid- and gas-saturated porous solid skeleton materials like geomaterials (soil, rock, concrete, etc. ), polymeric and metallic foams or biomaterials (hard and soft tissues, etc).

Computer Simulation of Chemical Reactions in Porous Materials

Computer Simulation of Chemical Reactions in Porous Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Understanding reactions in nanoporous materials from a purely experimental perspective is a difficult task. Measuring the chemical composition of a reacting system within a catalytic material is usually only accomplished through indirect methods, and it is usually impossible to distinguish between true chemical equilibrium and metastable states. In addition, measuring molecular orientation or distribution profiles within porous systems is not easily accomplished. However, molecular simulation techniques are well-suited to these challenges. With appropriate simulation techniques and realistic molecular models, it is possible to validate the dominant physical and chemical forces controlling nanoscale reactivity. Novel nanostructured catalysts and supports can be designed, optimized, and tested using high-performance computing and advanced modeling techniques in order to guide the search for next-generation catalysts - setting new targets for the materials synthesis community. We have simulated the conversion of several different equilibrium-limited reactions within microporous carbons and we find that the pore size, pore geometry, and surface chemistry are important factors for determining the reaction yield. The equilibrium-limited reactions that we have modeled include nitric oxide dimerization, ammonia synthesis, and the esterification of acetic acid, all of which show yield enhancements within microporous carbons. In conjunction with a yield enhancement of the esterification reaction, selective adsorption of ethyl acetate within carbon micropores demonstrates an efficient method for product recovery. Additionally, a new method has been developed for simulating reaction kinetics within porous materials and other heterogeneous environments. The validity of this technique is first demonstrated by reproducing the kinetics of hydrogen iodide decomposition in the gas phase, and then predictions are made within slit-shaped carbon pores and carbon nanotubes. The rate cons.