Author: S. Ratnajeevan H. Hoole
Publisher: Elsevier Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 520
Book Description
Computer-aided Analysis and Design of Electromagnetic Devices
Computer-Aided Design in Magnetics
Author: D.A. Lowther
Publisher: Springer Science & Business Media
ISBN: 3642706711
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Computer-aided design has come of age in the magnetic devices industry. From its early beginnings in the 1960s, when the precision needs of the experimental physics community first created a need for computational aids to magnet design, CAD software has grown to occupy an important spot in the industrial designer's tool kit. Numerous commercial CAD systems are now available for magnetics work, and many more software packages are used in-house by large industrial firms. While their capabilities vary, all these software systems share a very substantial common core of both methodology and objec tives. The present need, particularly in medium-sized and nonspecialist firms, is for an understanding of how to make effective use of these new and immensely powerful tools: what approximations are inherent in the methods, what quantities can be calculated, and how to relate the com puted results to the needs of the designer. These new analysis techniques profoundly affect the designer's approach to problems, since the analytic tools available exert a strong influence on the conceptual models people build, and these in turn dictate the manner in which they formulate prob lems. The impact of CAD is just beginning to be felt industrially, and the authors believe this is an early, but not too early, time to collect together some of the experience which has now accumulated among industrial and research users of magnetics analysis systems.
Publisher: Springer Science & Business Media
ISBN: 3642706711
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Computer-aided design has come of age in the magnetic devices industry. From its early beginnings in the 1960s, when the precision needs of the experimental physics community first created a need for computational aids to magnet design, CAD software has grown to occupy an important spot in the industrial designer's tool kit. Numerous commercial CAD systems are now available for magnetics work, and many more software packages are used in-house by large industrial firms. While their capabilities vary, all these software systems share a very substantial common core of both methodology and objec tives. The present need, particularly in medium-sized and nonspecialist firms, is for an understanding of how to make effective use of these new and immensely powerful tools: what approximations are inherent in the methods, what quantities can be calculated, and how to relate the com puted results to the needs of the designer. These new analysis techniques profoundly affect the designer's approach to problems, since the analytic tools available exert a strong influence on the conceptual models people build, and these in turn dictate the manner in which they formulate prob lems. The impact of CAD is just beginning to be felt industrially, and the authors believe this is an early, but not too early, time to collect together some of the experience which has now accumulated among industrial and research users of magnetics analysis systems.
Computer Field Models of Electromagnetic Devices
Author: Sławomir Wiak
Publisher: IOS Press
ISBN: 1607506033
Category : Science
Languages : en
Pages : 968
Book Description
Computer Field Models of Electromagnetic Devices, volume 34 in the book series Studies in Applied Electromagnetics and Mechanics is devoted to modeling and simulation, control systems, testing, measurements, monitoring, diagnostics and advanced software
Publisher: IOS Press
ISBN: 1607506033
Category : Science
Languages : en
Pages : 968
Book Description
Computer Field Models of Electromagnetic Devices, volume 34 in the book series Studies in Applied Electromagnetics and Mechanics is devoted to modeling and simulation, control systems, testing, measurements, monitoring, diagnostics and advanced software
Finite Element Analysis of Electrical Machines
Author: Sheppard J. Salon
Publisher: Springer Science & Business Media
ISBN: 1461523494
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
In Finite Element Analysis of Electrical Machines the author covers two-dimensional analysis, emphasizing the use of finite elements to perform the most common calculations required of machine designers and analysts. The book explains what is inside a finite element program, and how the finite element method can be used to determine the behavior of electrical machines. The material is tutorial and includes several completely worked out examples. The main illustrative examples are synchronous and induction machines. The methods described have been used successfully in the design and analysis of most types of rotating and linear machines. Audience: A valuable reference source for academic researchers, practitioners and designers of electrical machinery.
Publisher: Springer Science & Business Media
ISBN: 1461523494
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
In Finite Element Analysis of Electrical Machines the author covers two-dimensional analysis, emphasizing the use of finite elements to perform the most common calculations required of machine designers and analysts. The book explains what is inside a finite element program, and how the finite element method can be used to determine the behavior of electrical machines. The material is tutorial and includes several completely worked out examples. The main illustrative examples are synchronous and induction machines. The methods described have been used successfully in the design and analysis of most types of rotating and linear machines. Audience: A valuable reference source for academic researchers, practitioners and designers of electrical machinery.
Electromagnetic Analysis and Design in Magnetic Resonance Imaging
Author: Jianming Jin
Publisher: Routledge
ISBN: 1351453416
Category : Medical
Languages : en
Pages : 282
Book Description
This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.
Publisher: Routledge
ISBN: 1351453416
Category : Medical
Languages : en
Pages : 282
Book Description
This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.
Computational Electromagnetism
Author: Alain Bossavit
Publisher: Academic Press
ISBN: 0080529666
Category : Science
Languages : en
Pages : 375
Book Description
Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems.BenefitsTo the EngineerA sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software.To the Specialist in Numerical ModelingThe book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity."To the TeacherAn expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities.To the StudentSolved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.
Publisher: Academic Press
ISBN: 0080529666
Category : Science
Languages : en
Pages : 375
Book Description
Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems.BenefitsTo the EngineerA sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software.To the Specialist in Numerical ModelingThe book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity."To the TeacherAn expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities.To the StudentSolved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.
Applied Computational Electromagnetics
Author: Nikolaos K. Uzunoglu
Publisher: Springer Science & Business Media
ISBN: 3642596290
Category : Computers
Languages : en
Pages : 533
Book Description
@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.
Publisher: Springer Science & Business Media
ISBN: 3642596290
Category : Computers
Languages : en
Pages : 533
Book Description
@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.
The Finite Element Method for Electromagnetic Modeling
Author: Gérard Meunier
Publisher: John Wiley & Sons
ISBN: 0470393807
Category : Science
Languages : en
Pages : 618
Book Description
Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.
Publisher: John Wiley & Sons
ISBN: 0470393807
Category : Science
Languages : en
Pages : 618
Book Description
Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.
Electromagnetics and Calculation of Fields
Author: Nathan Ida
Publisher: Springer Science & Business Media
ISBN: 1461206618
Category : Technology & Engineering
Languages : en
Pages : 583
Book Description
This introduction to electromagnetic fields emphasizes the computation of fields and the development of theoretical relations. It presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, along with computational methods of solving the equations.
Publisher: Springer Science & Business Media
ISBN: 1461206618
Category : Technology & Engineering
Languages : en
Pages : 583
Book Description
This introduction to electromagnetic fields emphasizes the computation of fields and the development of theoretical relations. It presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, along with computational methods of solving the equations.
Introduction to Magnetism and Magnetic Materials
Author: David Jiles
Publisher: CRC Press
ISBN: 148223890X
Category : Science
Languages : en
Pages : 512
Book Description
A long overdue update, this edition of Introduction to Magnetism and Magnetic Materials is a complete revision of its predecessor. While it provides relatively minor updates to the first two sections, the third section contains vast updates to reflect the enormous progress made in applications in the past 15 years, particularly in magnetic recordin
Publisher: CRC Press
ISBN: 148223890X
Category : Science
Languages : en
Pages : 512
Book Description
A long overdue update, this edition of Introduction to Magnetism and Magnetic Materials is a complete revision of its predecessor. While it provides relatively minor updates to the first two sections, the third section contains vast updates to reflect the enormous progress made in applications in the past 15 years, particularly in magnetic recordin