Author: Andres Kriete
Publisher: Academic Press
ISBN: 0124059384
Category : Science
Languages : en
Pages : 549
Book Description
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.
Computational Systems Biology
Author: Andres Kriete
Publisher: Academic Press
ISBN: 0124059384
Category : Science
Languages : en
Pages : 549
Book Description
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.
Publisher: Academic Press
ISBN: 0124059384
Category : Science
Languages : en
Pages : 549
Book Description
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.
Learning and Inference in Computational Systems Biology
Author: Neil D. Lawrence
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 384
Book Description
Tools and techniques for biological inference problems at scales ranging from genome-wide to pathway-specific. Computational systems biology unifies the mechanistic approach of systems biology with the data-driven approach of computational biology. Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model--in other words, to answer specific questions about the underlying mechanisms of a biological system--in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built. Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 384
Book Description
Tools and techniques for biological inference problems at scales ranging from genome-wide to pathway-specific. Computational systems biology unifies the mechanistic approach of systems biology with the data-driven approach of computational biology. Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model--in other words, to answer specific questions about the underlying mechanisms of a biological system--in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built. Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon
Computational Systems Biology of Cancer
Author: Emmanuel Barillot
Publisher: CRC Press
ISBN: 1439831440
Category : Science
Languages : en
Pages : 463
Book Description
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.
Publisher: CRC Press
ISBN: 1439831440
Category : Science
Languages : en
Pages : 463
Book Description
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.
An Introduction to Computational Systems Biology
Author: Karthik Raman
Publisher: CRC Press
ISBN: 0429944527
Category : Computers
Languages : en
Pages : 359
Book Description
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.
Publisher: CRC Press
ISBN: 0429944527
Category : Computers
Languages : en
Pages : 359
Book Description
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.
Simulation Algorithms for Computational Systems Biology
Author: Luca Marchetti
Publisher: Springer
ISBN: 3319631136
Category : Computers
Languages : en
Pages : 245
Book Description
This book explains the state-of-the-art algorithms used to simulate biological dynamics. Each technique is theoretically introduced and applied to a set of modeling cases. Starting from basic simulation algorithms, the book also introduces more advanced techniques that support delays, diffusion in space, or that are based on hybrid simulation strategies. This is a valuable self-contained resource for graduate students and practitioners in computer science, biology and bioinformatics. An appendix covers the mathematical background, and the authors include further reading sections in each chapter.
Publisher: Springer
ISBN: 3319631136
Category : Computers
Languages : en
Pages : 245
Book Description
This book explains the state-of-the-art algorithms used to simulate biological dynamics. Each technique is theoretically introduced and applied to a set of modeling cases. Starting from basic simulation algorithms, the book also introduces more advanced techniques that support delays, diffusion in space, or that are based on hybrid simulation strategies. This is a valuable self-contained resource for graduate students and practitioners in computer science, biology and bioinformatics. An appendix covers the mathematical background, and the authors include further reading sections in each chapter.
An Introduction to Systems Biology
Author: Uri Alon
Publisher: CRC Press
ISBN: 1584886420
Category : Mathematics
Languages : en
Pages : 324
Book Description
Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.
Publisher: CRC Press
ISBN: 1584886420
Category : Mathematics
Languages : en
Pages : 324
Book Description
Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.
Frontiers in Computational and Systems Biology
Author: Jianfeng Feng
Publisher: Springer Science & Business Media
ISBN: 1849961964
Category : Science
Languages : en
Pages : 411
Book Description
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Publisher: Springer Science & Business Media
ISBN: 1849961964
Category : Science
Languages : en
Pages : 411
Book Description
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Elements of Computational Systems Biology
Author: Huma M. Lodhi
Publisher: John Wiley & Sons
ISBN: 0470556749
Category : Computers
Languages : en
Pages : 435
Book Description
Groundbreaking, long-ranging research in this emergent field that enables solutions to complex biological problems Computational systems biology is an emerging discipline that is evolving quickly due to recent advances in biology such as genome sequencing, high-throughput technologies, and the recent development of sophisticated computational methodologies. Elements of Computational Systems Biology is a comprehensive reference covering the computational frameworks and techniques needed to help research scientists and professionals in computer science, biology, chemistry, pharmaceutical science, and physics solve complex biological problems. Written by leading experts in the field, this practical resource gives detailed descriptions of core subjects, including biological network modeling, analysis, and inference; presents a measured introduction to foundational topics like genomics; and describes state-of-the-art software tools for systems biology. Offers a coordinated integrated systems view of defining and applying computational and mathematical tools and methods to solving problems in systems biology Chapters provide a multidisciplinary approach and range from analysis, modeling, prediction, reasoning, inference, and exploration of biological systems to the implications of computational systems biology on drug design and medicine Helps reduce the gap between mathematics and biology by presenting chapters on mathematical models of biological systems Establishes solutions in computer science, biology, chemistry, and physics by presenting an in-depth description of computational methodologies for systems biology Elements of Computational Systems Biology is intended for academic/industry researchers and scientists in computer science, biology, mathematics, chemistry, physics, biotechnology, and pharmaceutical science. It is also accessible to undergraduate and graduate students in machine learning, data mining, bioinformatics, computational biology, and systems biology courses.
Publisher: John Wiley & Sons
ISBN: 0470556749
Category : Computers
Languages : en
Pages : 435
Book Description
Groundbreaking, long-ranging research in this emergent field that enables solutions to complex biological problems Computational systems biology is an emerging discipline that is evolving quickly due to recent advances in biology such as genome sequencing, high-throughput technologies, and the recent development of sophisticated computational methodologies. Elements of Computational Systems Biology is a comprehensive reference covering the computational frameworks and techniques needed to help research scientists and professionals in computer science, biology, chemistry, pharmaceutical science, and physics solve complex biological problems. Written by leading experts in the field, this practical resource gives detailed descriptions of core subjects, including biological network modeling, analysis, and inference; presents a measured introduction to foundational topics like genomics; and describes state-of-the-art software tools for systems biology. Offers a coordinated integrated systems view of defining and applying computational and mathematical tools and methods to solving problems in systems biology Chapters provide a multidisciplinary approach and range from analysis, modeling, prediction, reasoning, inference, and exploration of biological systems to the implications of computational systems biology on drug design and medicine Helps reduce the gap between mathematics and biology by presenting chapters on mathematical models of biological systems Establishes solutions in computer science, biology, chemistry, and physics by presenting an in-depth description of computational methodologies for systems biology Elements of Computational Systems Biology is intended for academic/industry researchers and scientists in computer science, biology, mathematics, chemistry, physics, biotechnology, and pharmaceutical science. It is also accessible to undergraduate and graduate students in machine learning, data mining, bioinformatics, computational biology, and systems biology courses.
Biological Computation
Author: Ehud Lamm
Publisher: CRC Press
ISBN: 1420087967
Category : Mathematics
Languages : en
Pages : 332
Book Description
The area of biologically inspired computing, or biological computation, involves the development of new, biologically based techniques for solving difficult computational problems. A unified overview of computer science ideas inspired by biology, Biological Computation presents the most fundamental and significant concepts in this area. In the book
Publisher: CRC Press
ISBN: 1420087967
Category : Mathematics
Languages : en
Pages : 332
Book Description
The area of biologically inspired computing, or biological computation, involves the development of new, biologically based techniques for solving difficult computational problems. A unified overview of computer science ideas inspired by biology, Biological Computation presents the most fundamental and significant concepts in this area. In the book
Integer Linear Programming in Computational and Systems Biology
Author: Dan Gusfield
Publisher: Cambridge University Press
ISBN: 1108421768
Category : Computers
Languages : en
Pages : 431
Book Description
This hands-on tutorial text for non-experts demonstrates biological applications of a versatile modeling and optimization technique.
Publisher: Cambridge University Press
ISBN: 1108421768
Category : Computers
Languages : en
Pages : 431
Book Description
This hands-on tutorial text for non-experts demonstrates biological applications of a versatile modeling and optimization technique.