Author: Per Jensen
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 696
Book Description
This book describes the use of modern computational methods in predicting high resolution molecular spectra, which allows the experimental spectroscopist to interpret and assign real spectra. * Offers a comprehensive treatment of modern computation techniques. * Provides a collection of material from different areas of theoretical chemistry and physics. * Bridges the gap between traditional quantum chemistry and experimental molecular spectroscopy.
Computational Molecular Spectroscopy
Author: Per Jensen
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 696
Book Description
This book describes the use of modern computational methods in predicting high resolution molecular spectra, which allows the experimental spectroscopist to interpret and assign real spectra. * Offers a comprehensive treatment of modern computation techniques. * Provides a collection of material from different areas of theoretical chemistry and physics. * Bridges the gap between traditional quantum chemistry and experimental molecular spectroscopy.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 696
Book Description
This book describes the use of modern computational methods in predicting high resolution molecular spectra, which allows the experimental spectroscopist to interpret and assign real spectra. * Offers a comprehensive treatment of modern computation techniques. * Provides a collection of material from different areas of theoretical chemistry and physics. * Bridges the gap between traditional quantum chemistry and experimental molecular spectroscopy.
Computational Spectroscopy
Author: Jörg Grunenberg
Publisher: John Wiley & Sons
ISBN: 3527643621
Category : Science
Languages : en
Pages : 421
Book Description
Unique in its comprehensive coverage of not only theoretical methods but also applications in computational spectroscopy, this ready reference and handbook compiles the developments made over the last few years, from single molecule studies to the simulation of clusters and the solid state, from organic molecules to complex inorganic systems and from basic research to commercial applications in the area of environment relevance. In so doing, it covers a multitude of apparatus-driven technologies, starting with the common and traditional spectroscopic methods, more recent developments (THz), as well as rather unusual methodologies and systems, such as the prediction of parity violation, rare gas HI complexes or theoretical spectroscopy of the transition state. With its summarized results of so many different disciplines, this timely book will be of interest to newcomers to this hot topic while equally informing experts about developments in neighboring fields.
Publisher: John Wiley & Sons
ISBN: 3527643621
Category : Science
Languages : en
Pages : 421
Book Description
Unique in its comprehensive coverage of not only theoretical methods but also applications in computational spectroscopy, this ready reference and handbook compiles the developments made over the last few years, from single molecule studies to the simulation of clusters and the solid state, from organic molecules to complex inorganic systems and from basic research to commercial applications in the area of environment relevance. In so doing, it covers a multitude of apparatus-driven technologies, starting with the common and traditional spectroscopic methods, more recent developments (THz), as well as rather unusual methodologies and systems, such as the prediction of parity violation, rare gas HI complexes or theoretical spectroscopy of the transition state. With its summarized results of so many different disciplines, this timely book will be of interest to newcomers to this hot topic while equally informing experts about developments in neighboring fields.
Molecular Spectroscopy—Experiment and Theory
Author: Andrzej Koleżyński
Publisher: Springer
ISBN: 3030013553
Category : Science
Languages : en
Pages : 529
Book Description
This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.
Publisher: Springer
ISBN: 3030013553
Category : Science
Languages : en
Pages : 529
Book Description
This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.
Fundamentals of Quantum Chemistry
Author: Michael P. Mueller
Publisher: Springer Science & Business Media
ISBN: 0306475669
Category : Science
Languages : en
Pages : 277
Book Description
As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has developed with profound consequences in our ability to understand nature. In the early years, quantum theory was the providence of physicists and certain breeds of physical chemists. While physicists honed and refined the theory and studied atoms and their component systems, physical chemists began the foray into the study of larger, molecular systems. Quantum theory predictions of these systems were first verified through experimental spectroscopic studies in the electromagnetic spectrum (microwave, infrared and ultraviolet/visible), and, later, by nuclear magnetic resonance (NMR) spectroscopy. Over two generations these studies were hampered by two major drawbacks: lack of resolution of spectroscopic data, and the complexity of calculations. This powerful theory that promised understanding of the fundamental nature of molecules faced formidable challenges. The following example may put things in perspective for today’s chemistry faculty, college seniors or graduate students: As little as 40 years ago, force field calculations on a molecule as simple as ketene was a four to five year dissertation project.
Publisher: Springer Science & Business Media
ISBN: 0306475669
Category : Science
Languages : en
Pages : 277
Book Description
As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has developed with profound consequences in our ability to understand nature. In the early years, quantum theory was the providence of physicists and certain breeds of physical chemists. While physicists honed and refined the theory and studied atoms and their component systems, physical chemists began the foray into the study of larger, molecular systems. Quantum theory predictions of these systems were first verified through experimental spectroscopic studies in the electromagnetic spectrum (microwave, infrared and ultraviolet/visible), and, later, by nuclear magnetic resonance (NMR) spectroscopy. Over two generations these studies were hampered by two major drawbacks: lack of resolution of spectroscopic data, and the complexity of calculations. This powerful theory that promised understanding of the fundamental nature of molecules faced formidable challenges. The following example may put things in perspective for today’s chemistry faculty, college seniors or graduate students: As little as 40 years ago, force field calculations on a molecule as simple as ketene was a four to five year dissertation project.
Frontiers of Molecular Spectroscopy
Author: Jaan Laane
Publisher: Elsevier
ISBN: 0080932371
Category : Science
Languages : en
Pages : 741
Book Description
Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. - Provides comprehensive coverage of present spectroscopic investigations - Features 20 chapters written by leading researchers in the field - Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology
Publisher: Elsevier
ISBN: 0080932371
Category : Science
Languages : en
Pages : 741
Book Description
Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. - Provides comprehensive coverage of present spectroscopic investigations - Features 20 chapters written by leading researchers in the field - Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology
Atomic and Molecular Spectroscopy
Author: Sune Svanberg
Publisher: Springer Science & Business Media
ISBN: 3642973981
Category : Science
Languages : en
Pages : 418
Book Description
A wide-ranging review of modern techniques in atomic and molecular spectroscopy. A brief description of atomic and molecular structure is followed by the relevant energy structure expressions. A discussion of radiative properties and the origin of spectra leads into coverage of X-ray and photoelectron spectroscopy, optical spectroscopy, and radiofrequency and microwave techniques. The treatment of laser spectroscopy investigates various tunable sources and a wide range of techniques characterized by high sensitivity and high resolution. Throughout this book, the relation between fundamental and applied aspects is shown, in particular by descriptions of applications to chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophysics.
Publisher: Springer Science & Business Media
ISBN: 3642973981
Category : Science
Languages : en
Pages : 418
Book Description
A wide-ranging review of modern techniques in atomic and molecular spectroscopy. A brief description of atomic and molecular structure is followed by the relevant energy structure expressions. A discussion of radiative properties and the origin of spectra leads into coverage of X-ray and photoelectron spectroscopy, optical spectroscopy, and radiofrequency and microwave techniques. The treatment of laser spectroscopy investigates various tunable sources and a wide range of techniques characterized by high sensitivity and high resolution. Throughout this book, the relation between fundamental and applied aspects is shown, in particular by descriptions of applications to chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophysics.
Methods in Computational Molecular Physics
Author: Geerd H.F. Diercksen
Publisher: Springer Science & Business Media
ISBN: 9400972008
Category : Science
Languages : en
Pages : 367
Book Description
This NATO Advanced Study Institute was concerned with modern ab initio methods for the determination of the electronic structure of molecules. Recent years have seen considerable progress in computer technology and computer science and these developments have had a very significant influence on computational molecular physics. Progress in computer technology has led to increasingly larger and faster systems as well as powerful minicomputers. Simultaneous research in computer science has explored new methods for the optimal use of these resources. To a large extent develop ments in computer technology, computer science and computational molecular physics have been mutually dependent. The availability of new computational resources, particularly minicomputers and, more recently, vector processors, has stimulat'ed a great deal of research in molecular physics. Well established techniques have been reformulated to make more efficient use of the new computer technology and algorithms which were previously computationally intractable have now been successfully implemented. This research has given a new and exciting insight into molecular structure and molecular processes by enabling smaller systems to be studied in greater detail and larger systems to be studied for the first time.
Publisher: Springer Science & Business Media
ISBN: 9400972008
Category : Science
Languages : en
Pages : 367
Book Description
This NATO Advanced Study Institute was concerned with modern ab initio methods for the determination of the electronic structure of molecules. Recent years have seen considerable progress in computer technology and computer science and these developments have had a very significant influence on computational molecular physics. Progress in computer technology has led to increasingly larger and faster systems as well as powerful minicomputers. Simultaneous research in computer science has explored new methods for the optimal use of these resources. To a large extent develop ments in computer technology, computer science and computational molecular physics have been mutually dependent. The availability of new computational resources, particularly minicomputers and, more recently, vector processors, has stimulat'ed a great deal of research in molecular physics. Well established techniques have been reformulated to make more efficient use of the new computer technology and algorithms which were previously computationally intractable have now been successfully implemented. This research has given a new and exciting insight into molecular structure and molecular processes by enabling smaller systems to be studied in greater detail and larger systems to be studied for the first time.
Equilibrium Molecular Structures
Author: Jean Demaison
Publisher: CRC Press
ISBN: 1439811350
Category : Science
Languages : en
Pages : 302
Book Description
Molecular structure is the most basic information about a substance, determining most of its properties. Determination of accurate structures is hampered in that every method applies its own definition of "structure" and thus results from different sources can yield significantly different results. Sophisticated protocols exist to account for these
Publisher: CRC Press
ISBN: 1439811350
Category : Science
Languages : en
Pages : 302
Book Description
Molecular structure is the most basic information about a substance, determining most of its properties. Determination of accurate structures is hampered in that every method applies its own definition of "structure" and thus results from different sources can yield significantly different results. Sophisticated protocols exist to account for these
Molecular Spectroscopy
Author: Yukihiro Ozaki
Publisher: John Wiley & Sons
ISBN: 3527814620
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Uniquely creates a strong bridge between molecular spectroscopy and quantum chemistry This two-volume book consists of many reviews reporting new applications of quantum chemistry to molecular spectroscopy (Raman, infrared, near-infrared, terahertz, far-ultraviolet, etc.). It contains brief introductions to quantum chemistry for spectroscopists, and to the recent progress on molecular spectroscopy for quantum chemists. Molecular Spectroscopy: A Quantum Chemistry Approach examines the recent progress made in the field of molecular spectroscopy; the state of the art of quantum chemistry for molecular spectroscopy; and more. It offers multiple chapters covering the application of quantum chemistry to: visible absorption and fluorescence, Raman spectroscopy, infrared spectroscopy, near-infrared spectroscopy, terahertz spectroscopy, and far-ultraviolet spectroscopy. It presents readers with hydrogen bonding studies by vibrational spectroscopy and quantum chemistry, as well as vibrational spectroscopy and quantum chemistry studies on both biological systems and nano science. The book also looks at vibrational anharmonicity and overtones, and nonlinear and time-resolved spectroscopy. -Comprehensively covers existing and recent applications of quantum chemistry to molecular spectroscopy -Introduces the quantum chemistry for the field of spectroscopy and the advancements being made on molecular spectroscopy for quantum chemistry -Edited by world leading experts who have long standing, extensive experience and international standing in the field Molecular Spectroscopy: A Quantum Chemistry Approach is an ideal book for analytical chemists, theoretical chemists, chemists, biochemists, materials scientists, biologists, and physicists interested in the subject.
Publisher: John Wiley & Sons
ISBN: 3527814620
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Uniquely creates a strong bridge between molecular spectroscopy and quantum chemistry This two-volume book consists of many reviews reporting new applications of quantum chemistry to molecular spectroscopy (Raman, infrared, near-infrared, terahertz, far-ultraviolet, etc.). It contains brief introductions to quantum chemistry for spectroscopists, and to the recent progress on molecular spectroscopy for quantum chemists. Molecular Spectroscopy: A Quantum Chemistry Approach examines the recent progress made in the field of molecular spectroscopy; the state of the art of quantum chemistry for molecular spectroscopy; and more. It offers multiple chapters covering the application of quantum chemistry to: visible absorption and fluorescence, Raman spectroscopy, infrared spectroscopy, near-infrared spectroscopy, terahertz spectroscopy, and far-ultraviolet spectroscopy. It presents readers with hydrogen bonding studies by vibrational spectroscopy and quantum chemistry, as well as vibrational spectroscopy and quantum chemistry studies on both biological systems and nano science. The book also looks at vibrational anharmonicity and overtones, and nonlinear and time-resolved spectroscopy. -Comprehensively covers existing and recent applications of quantum chemistry to molecular spectroscopy -Introduces the quantum chemistry for the field of spectroscopy and the advancements being made on molecular spectroscopy for quantum chemistry -Edited by world leading experts who have long standing, extensive experience and international standing in the field Molecular Spectroscopy: A Quantum Chemistry Approach is an ideal book for analytical chemists, theoretical chemists, chemists, biochemists, materials scientists, biologists, and physicists interested in the subject.
Mathematical Challenges from Theoretical/Computational Chemistry
Author: National Research Council
Publisher: National Academies Press
ISBN: 030917662X
Category : Mathematics
Languages : en
Pages : 143
Book Description
Computational methods are rapidly becoming major tools of theoretical, pharmaceutical, materials, and biological chemists. Accordingly, the mathematical models and numerical analysis that underlie these methods have an increasingly important and direct role to play in the progress of many areas of chemistry. This book explores the research interface between computational chemistry and the mathematical sciences. In language that is aimed at non-specialists, it documents some prominent examples of past successful cross-fertilizations between the fields and explores the mathematical research opportunities in a broad cross-section of chemical research frontiers. It also discusses cultural differences between the two fields and makes recommendations for overcoming those differences and generally promoting this interdisciplinary work.
Publisher: National Academies Press
ISBN: 030917662X
Category : Mathematics
Languages : en
Pages : 143
Book Description
Computational methods are rapidly becoming major tools of theoretical, pharmaceutical, materials, and biological chemists. Accordingly, the mathematical models and numerical analysis that underlie these methods have an increasingly important and direct role to play in the progress of many areas of chemistry. This book explores the research interface between computational chemistry and the mathematical sciences. In language that is aimed at non-specialists, it documents some prominent examples of past successful cross-fertilizations between the fields and explores the mathematical research opportunities in a broad cross-section of chemical research frontiers. It also discusses cultural differences between the two fields and makes recommendations for overcoming those differences and generally promoting this interdisciplinary work.