Author: Dietmar Heinke
Publisher: Psychology Press
ISBN: 1135430039
Category : Medical
Languages : en
Pages : 375
Book Description
This book represents the state-of-the-art in the field through a unique collection of papers from the world's leading researchers in the area of computational modelling in behavioural neuroscience.
Computational Modelling in Behavioural Neuroscience
Author: Dietmar Heinke
Publisher: Psychology Press
ISBN: 1135430039
Category : Medical
Languages : en
Pages : 375
Book Description
This book represents the state-of-the-art in the field through a unique collection of papers from the world's leading researchers in the area of computational modelling in behavioural neuroscience.
Publisher: Psychology Press
ISBN: 1135430039
Category : Medical
Languages : en
Pages : 375
Book Description
This book represents the state-of-the-art in the field through a unique collection of papers from the world's leading researchers in the area of computational modelling in behavioural neuroscience.
Computational Models of Brain and Behavior
Author: Ahmed A. Moustafa
Publisher: John Wiley & Sons
ISBN: 1119159075
Category : Psychology
Languages : en
Pages : 588
Book Description
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.
Publisher: John Wiley & Sons
ISBN: 1119159075
Category : Psychology
Languages : en
Pages : 588
Book Description
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.
Computational Modeling of Cognition and Behavior
Author: Simon Farrell
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485
Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485
Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.
Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications
Author: Alonso, Eduardo
Publisher: IGI Global
ISBN: 1609600231
Category : Computers
Languages : en
Pages : 394
Book Description
"This book argues that computational models in behavioral neuroscience must be taken with caution, and advocates for the study of mathematical models of existing theories as complementary to neuro-psychological models and computational models"--
Publisher: IGI Global
ISBN: 1609600231
Category : Computers
Languages : en
Pages : 394
Book Description
"This book argues that computational models in behavioral neuroscience must be taken with caution, and advocates for the study of mathematical models of existing theories as complementary to neuro-psychological models and computational models"--
Computational Modelling in Behavioural Neuroscience
Author: Dietmar Heinke
Publisher: Psychology Press
ISBN: 1135430020
Category : Psychology
Languages : en
Pages : 475
Book Description
Classically, behavioural neuroscience theorizes about experimental evidence in a qualitative way. However, more recently there has been an increasing development of mathematical and computational models of experimental results, and in general these models are more clearly defined and more detailed than their qualitative counter parts. These new computational models can be set up so that they are consistent with both single neuron and whole-system levels of operation, allowing physiological results to be meshed with behavioural data – thus closing the gap between neurophysiology and human behaviour. There is considerable diversity between models with respect to the methodology of designing a model, the degree to which neurophysiological processes are taken into account and the way data (behavioural, electrophysiological, etc) constrains a model. This book presents examples of this diversity and in doing so represents the state-of-art in the field through a unique collection of papers from the world's leading researchers in the area of computational modelling in behavioural neuroscience. Based on talks given at the third Behavioural Brain Sciences Symposium, held at the Behavioural Brain Sciences Centre, University of Birmingham, in May 2007, the book appeals to a broad audience, from postgraduate students beginning to work in the field to experienced experimenters interested in an overview.
Publisher: Psychology Press
ISBN: 1135430020
Category : Psychology
Languages : en
Pages : 475
Book Description
Classically, behavioural neuroscience theorizes about experimental evidence in a qualitative way. However, more recently there has been an increasing development of mathematical and computational models of experimental results, and in general these models are more clearly defined and more detailed than their qualitative counter parts. These new computational models can be set up so that they are consistent with both single neuron and whole-system levels of operation, allowing physiological results to be meshed with behavioural data – thus closing the gap between neurophysiology and human behaviour. There is considerable diversity between models with respect to the methodology of designing a model, the degree to which neurophysiological processes are taken into account and the way data (behavioural, electrophysiological, etc) constrains a model. This book presents examples of this diversity and in doing so represents the state-of-art in the field through a unique collection of papers from the world's leading researchers in the area of computational modelling in behavioural neuroscience. Based on talks given at the third Behavioural Brain Sciences Symposium, held at the Behavioural Brain Sciences Centre, University of Birmingham, in May 2007, the book appeals to a broad audience, from postgraduate students beginning to work in the field to experienced experimenters interested in an overview.
Computational Explorations in Cognitive Neuroscience
Author: Randall C. O'Reilly
Publisher: MIT Press
ISBN: 9780262650540
Category : Medical
Languages : en
Pages : 540
Book Description
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
Publisher: MIT Press
ISBN: 9780262650540
Category : Medical
Languages : en
Pages : 540
Book Description
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
Fundamentals of Neural Network Modeling
Author: Randolph W. Parks
Publisher: MIT Press
ISBN: 9780262161756
Category : Computers
Languages : en
Pages : 450
Book Description
Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble
Publisher: MIT Press
ISBN: 9780262161756
Category : Computers
Languages : en
Pages : 450
Book Description
Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble
Computational Vision
Author: Hanspeter A. Mallot
Publisher: MIT Press
ISBN: 9780262133814
Category : Medical
Languages : en
Pages : 318
Book Description
This text provides an introduction to computational aspects of early vision, in particular, color, stereo, and visual navigation. It integrates approaches from psychophysics and quantitative neurobiology, as well as theories and algorithms from machine vision and photogrammetry. When presenting mathematical material, it uses detailed verbal descriptions and illustrations to clarify complex points. The text is suitable for upper-level students in neuroscience, biology, and psychology who have basic mathematical skills and are interested in studying the mathematical modeling of perception.
Publisher: MIT Press
ISBN: 9780262133814
Category : Medical
Languages : en
Pages : 318
Book Description
This text provides an introduction to computational aspects of early vision, in particular, color, stereo, and visual navigation. It integrates approaches from psychophysics and quantitative neurobiology, as well as theories and algorithms from machine vision and photogrammetry. When presenting mathematical material, it uses detailed verbal descriptions and illustrations to clarify complex points. The text is suitable for upper-level students in neuroscience, biology, and psychology who have basic mathematical skills and are interested in studying the mathematical modeling of perception.
An Introductory Course in Computational Neuroscience
Author: Paul Miller
Publisher: MIT Press
ISBN: 0262347563
Category : Science
Languages : en
Pages : 405
Book Description
A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.
Publisher: MIT Press
ISBN: 0262347563
Category : Science
Languages : en
Pages : 405
Book Description
A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.
Computational Neuroscience and Cognitive Modelling
Author: Britt Anderson
Publisher: SAGE
ISBN: 1446297373
Category : Psychology
Languages : en
Pages : 241
Book Description
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.
Publisher: SAGE
ISBN: 1446297373
Category : Psychology
Languages : en
Pages : 241
Book Description
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.